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The shape of "the Spandex" and orbits upon its surface
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What is the shape that results when a flat rubber sheet is warped by placing a heavy ball upon it? We show that, at distance R far
from the center of a ball of mass M, the height h of the surface above the ball's center is given by h(R) = AM1/3R2/3, where A is a
constant determined by the stretchiness of the rubber and the earth's gravitational constant. This happy result allows one to
analyze the orbits of marbles and coins as they roll across the surface in some detail, providing very nice analogues for a wealth
of topics in celestial mechanics, from Kepler's laws to tides and the Roche limit. © 2002 American Association of Physics
Teachers.
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I. INTRODUCTION

This adventure began in the grocery store (or perhaps a hands-on science museum), where one of the authors (GDW) remembers
being fascinated by the peculiarly shaped plastic surface on which donated coins would roll and eventual spiral down into the
collection bin. He wondered about the mathematical form of the shape of this surface, and how accurately these rolling coins
modeled planetary orbits. Later, in his first attempt at teaching astronomy, his inability to fully understand the textbook
discussions of the tides1 led him to pursue the development of a device to demonstrate tidal effects. By stretching some elastic
material across a square wooden frame (later, a circular frame was fashioned) and suspending a heavy mass from the middle of
the stretchy cloth, a surface similar to that in the grocery check-out aisle was produced. (This material, which goes by the name
spandex, is often used to make biking shorts, and is readily found in fabric shops.) This construction, while allowing marbles and
coins to roll reasonably smoothly across its surface, had an advantage over its science museum and grocery store counterparts—
its surface was flexible, becoming steeper with heavier masses, thus nicely mimicking gravitational potential surfaces. Promptly
christened "the Spandex," this device has since been used in various educational settings to demonstrate a variety of
astronomical effects, especially tidal and orbital phenomena.2 The Spandex has also been a great research instrument for
beginning students, especially helpful in demonstrating features from topics such as the formation of the solar system, orbits

http://scitation.aip.org/dbt/dbt.jsp?KEY=AJPIAS&Volume=70&Issue=1
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/42_1-div0.html
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/53_1-div0.html
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/48_1-div0.html
http://scitation.aip.org/journal_cgi/getpdf?KEY=AJPIAS&cvips=AJPIAS000070000001000048000001
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/48_1.html#XA
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/48_1.html#XB
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/48_1.html#div1
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/48_1.html#div2
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/48_1.html#div3
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/48_1.html#div4
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/48_1.html#div5
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/48_1.html#div6
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/48_1.html#div7
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/48_1.html#div8
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/48_1.html#R1
http://scitation.aip.org/journals/doc/AJPIAS-ft/vol_70/iss_1/48_1.html#R2


around binary systems, circular versus elliptical orbits for planets, and the origins of Cassini's Division and the Kirkwood Gaps.3

One moral of this story is that a little knowledge is a dangerous thing. One of us (GDW) had read a little bit about minimal
surfaces and clung to the notion (in spite of mounting contradictory evidence provided by his students) that the Spandex was like
a soap bubble film. Thus, he kept insisting that the shape of the Spandex should be the same as the shape of a soap bubble film
suspended between two horizontal rings sharing the same vertical symmetry axis, the upper ring large (about a meter across) and
the lower ring very small. The soap bubble shape that minimizes energy between two hoops so arranged has been long
established to have a profile described by the catenary curve [~A cosh(x/A), but rotated a quarter turn from its usual orientation
in which it describes a string suspended between two points]. Only in the face of a mound of data showing that the height of the
cloth above the hanging mass was in fact a power law, h(R) = AM1/3R2/3, did we finally seek a theoretical description of the
surface not based on soap bubbles' mathematical description.4

One might alternatively suppose that the Spandex surface satisfies LaPlace's equation, like a static, weighted drumhead. Then
one would expect the surface height to be given by the form k ln(r) + C, and the orbits would be the gravitational orbits about a
very long stick of mass. We show below though, that the Spandex only satisfies LaPlace's equation when the tangent to the
surface is nearly vertical, a region, incidentally, that we did not pursue experimentally. One might next turn to the bulk of the
literature on elasticity of surfaces, however, a perusal of a few of these textbooks turned up no direct treatment of this topic. For
example, Love's text5 gives an expression for the vertical displacement of an initially horizontal circular plate, supported on its
boundary and then loaded at its center. We were not able to extract our 2/3 power from a limiting case of this expression (which
involved quadratic and logarithmic terms); apparently a flexible surface like the Spandex is not a special case of the more rigid
plate problem.

Finally, to close this section on related literature, we mention some interesting articles from this journal. The most recent
concerns objects rolling on cylindrically symmetric surfaces, discussing stability of orbits and concavity.6 Others include
interesting discussions of the tides and/or of orbital problems and references.7,8,9

In this paper, in addition to reporting on the shape of the Spandex in Sec. II, we also present some experiments concerning orbits
on the Spandex in Sec. III, primarily the analogue to Kepler's third law (KIII) for planetary orbits. One can, with some care,
determine how the period depends upon the radius for near circular orbits to compare the results of Spandex orbits to those of an
inverse square force law. We have performed this experiment about a half-dozen times with groups ranging from junior high
school students to senior-level physics majors, and have observed directly the benefits of having a contrast to KIII on the actual
understanding of KIII. Since the data from the Spandex do not conform to the usual statement of KIII, T2/R3 = constant (the
Spandex more nearly follows T3/R2 = constant, instead), the students are better able to internalize the meaning of KIII, in our
opinion, by having an example of when it is not true.

II. THE SHAPE OF THE SPANDEX

In Fig. 1 we show how the profile of the Spandex changes as the hanging mass is increased. This version of the Spandex was
made from a standard 4 ft!8 ft piece of -in-thick plyboard. We cut a large circular hole, with radius a little more than a half

meter, and cut and hinged the plyboard lengthwise, so that it would be easier to transport. Then we attached the spandex
material, using dozens of tacks around the circular border. In Fig. 2 we consolidate the data of Fig. 1, plotting ln(h) vs ln(MR2).
The data fit a line with slope 1/3 very nicely, thus exhibiting the relationship between the height of the surface, the hanging
mass, and the distance from the center axis,
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Figure 1. Figure 2.

One can also arrive at this result theoretically under the assumption that the Spandex be modeled as a collection of concentric,
massless rigid rings connected to each other by means of massless springs with spring constant k. We also assume that the
number of springs attached to the inside of each ring is proportional to the circumference of the ring. Newton's second law (see
Fig. 3) gives

for the lowest ring (where n0 is the number of springs attached to the hanging mass M) and

for the ith ring. Thus, for any ring, not just the first one, the equilibrium condition is

where the subscripts have been suppressed.

Figure 3.

Suppose that each spring has equilibrium length equal to the spacing of the rigid rings, dR, and that s is the amount each ideal
spring gets stretched after the mass is suspended. Then from the triangle (see Fig. 4) s must satisfy s = dR(1/cos( )–1).
Furthermore, the number of springs holding up each ring is proportional to the circumference, so n = 2 R where  is the same
constant for every ring. The equilibrium condition becomes

or

where B = g/(2 k dR) is small if the Spandex does not stretch easily and large if it is easy to stretch. We take the limit as dR
goes to zero in such a way as to leave B constant. This is natural since halving the length of a spring doubles its spring constant.

Figure 4.
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In our experiments most of the action on the Spandex occurred in the regions relatively far from the center, where the angle  is
small. Since tan( ) is the rate of change of h with respect to R, then Eq. (6) is the differential equation defining the shape of the
surface of the Spandex. To avoid attempting to solve this rather nasty nonlinear differential equation exactly, we take the small
angle limit. In the limit of small  the denominator simplifies to

or since

we can write

Integration completes this theoretical derivation of the claimed result for small  (which is equivalent to large distances), h(R) =
AM1/3R2/3, where A = 1.5(2B)1/3. Qualitatively, this form has features that one would expect, such as stretchier cloth (meaning
larger A) implies more vertical displacement (larger h); also heavier hanging mass implies more vertical displacement.

We also note that Eq. (6), in the limit as  approaches /2, yields dh/dR = c/R, which is precisely the form of the solution to
LaPlace's equation with axial symmetry. Thus deep inside of the well, one might expect to see behavior similar to that of planets
or stars orbiting a very long stick shaped galaxy, or electrons orbiting a long straight positively charged wire. We did not
investigate marble orbits very near the center experimentally, however.

III. CIRCULAR ORBITS ON THE SPANDEX

We now turn to the experimental determination of the behavior of circular orbits on the Spandex. While the variance of the data
is rather large since the orbital radius decreases significantly during one orbit, repeatable results are obtainable, even with
inexperienced experimenters. Our simple theoretical model, which will utilize only point masses sliding without friction, suffices
to describe these orbits despite the fact that, experimentally, we always used rolling objects. Curiously, we have never noticed
significant differences in the period of the orbit for a marble versus a coin, or for large versus small marbles, despite our varied
prejudices. Even with rather large uncertainties in the data, one might be tempted to characterize the data shown in Fig. 5 by
saying that T3/R2~constant (instead of T2/R3 = constant, as in Kepler's third law), especially after the analysis that follows. We
use the shape of the Spandex obtained above and apply Newton's second law.

Figure 5.

Figure 6 shows a side view of the Spandex, with forces as shown. Applying Newton's second law to an object sliding on the
Spandex without friction in a horizontal circular orbit of radius R, one gets N cos( )–mg = 0 for the vertical component, where N
is the normal force that the Spandex exerts on the object. The horizontal component of the second law then becomes
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Using tan( ) = dh/dR = (2/3)A(M/R)1/3 and V = 2 R/T, we get a prediction for the analogue to KIII on the Spandex, i.e.,

or

Thus, the Spandex is seen to reverse the exponents on R and T (for fixed M) when compared to Kepler's third law.

Figure 6.

We close this section with Fig. 7, which rearranges the data in Fig. 5 to show ln(T) plotted versus ln(R2/M1/2). The data match a
line with slope 1/3 as expected, at least in the upper right region where the small angle condition is satisfied. The y intercepts of
the lines in Figs. 7 and 2 both yield consistent values for the constant A~0.5 (m/kg)1/3.

Figure 7.

IV. CLOSING

In conclusion, we assert that the Spandex is worth the time to build and use to demonstrate orbital phenomena at any level, even
without the satisfying agreement achieved above between the theoretical models and the experimental results. Pedagogically,
seeing precession, measuring periods versus radii, and investigating tides and orbits in potential well models is valuable
whatever the mathematical sophistication of the student. A further benefit that should not go unmentioned is that it is difficult to
keep even the most science-averse students from taking a chance and rolling a marble or two. [See Fig. 8, which shows a small
flock poring over an early version of the Spandex with two hanging masses attached, allowing study of orbits about a
(nonrotating) binary system.] The fact that the surface does not exactly match reality is not necessarily a hindrance; rather, we
would argue that student (and teacher) understanding is enhanced (beyond that which would occur if one had a perfect small
scale model of a rotating binary gravitational system) by a dialogue like the following:

Figure 8.

Teacher: Now, what are the contrasts between orbits on this crude binary model and orbits about an actual binary star system?
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Student 1: The Spandex model is too small! Student 2: Duuuhhhh! Hey, and planets don't roll.

Student 3: and there's way too much friction.

Teacher: Good, anything else?

Student 2: The Spandex bounces when I pull it up and let it go, like this.

Teacher: Um, right anything else?

Student 3: The shape of the Spandex is not quite right, right?

Imaginary ideal student: Gravity has an inverse square force law, implying that the surface height should go as 1/R, while the
Spandex has an inverse cube root force law at large distances, corresponding to a surface behavior of R2/3, right?

Teacher: Very good, and what about the dependence of the orbits on the center mass?

Student 3: bigger masses at the center mean faster orbits and more tidal effects.

Imaginary ideal student: Right, in fact if you want to half the orbital time at fixed distance in real gravity, you increase the
central mass by a factor of 4, but with the Spandex you have to increase the central mass by a factor of 64!

Teacher: Uh , why don't we all get out our pencils and check that? By the way, can you think of another contrast
involving the motion of these two binary systems?

Imaginary ideal student: Yes, we would have to center the Spandex on a big turntable, rotating at just the right speed to more
accurately represent an equal mass gravitational binary system.

Teacher: and what about an unequal mass system?

Student 2: Let's try it! I'll pick up this end over my head and you

A discussion like this, idealized or not, provides numerous opportunities for the teacher to "spiral back," and better helps
students to understand qualitatively how the universe behaves and how it does not. Quantitatively, besides giving opportunities
for novice students to do science, graphs, data analysis, etc., it shows what the universe is not like, giving students a chance to
reflect on the differences and thereby better enhancing their chances of retaining the material.10 The Spandex is not unique in
this respect; other astronomical models afford similar opportunities. For example, students attempting to build a scale model of
the solar system eventually come to a better appreciation of the vast emptiness of space than they would by less interactive
methods of discovery, and a commercial orrery generally exhibits some deficiency in its representation of the coincident motion
of the planets and moons that can occasion a pedagogically valuable experience. Incidentally, the notion of an "ideal imaginary
student" while perhaps amusing to envision, and appealing at first glance, can actually be subversive in a subtle way. To
illustrate, we note that we scarcely can resist launching into an elevated discussion with an exceptional student who vocalizes
deep insights in the classroom. But it is our considered opinion that, as gratifying as this kind of discussion can be for the two
participants, it rarely develops into effective pedagogy for the rest of the class.
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Fig. 1. Measurements of the profile of the Spandex, a circular elastic sheet, supported by its boundary with a heavy mass
hanging from the center of the sheet. The hanging mass is varied from 0.25 kg (closed diamonds) to 2.5 kg (open diamonds) with
steps of 0.25 kg. First citation in article

Full figure (6 kB)

Fig. 2. Data from Fig. 1 plotted as ln(h) vs ln(MR2), where h is the height above the lowest point of the Spandex at a radial
distance R when mass M is hung from its center. The line (not a fit) has slope 1/3 as predicted by the theoretical model. First
citation in article

Full figure (5 kB)

Fig. 3. We model the Spandex as rigid, massless, concentric rings connected by massless springs; the number of springs attached
to the inside of each ring is proportional to the circumference. First citation in article

Full figure (3 kB)

Fig. 4. Each spring has an original length dR and stretches an amount s. First citation in article

Full figure (6 kB)

Fig. 5. Experimental data for near circular orbits (analogous to Kepler's third law) on the Spandex for hanging masses varying
from 0.25 kg (closed diamonds) to 2.25 kg (open triangles). Uncertainties in these measurements can be as much as 20%–30%,
but notice that the concavity, though slight, is opposite that of Kepler's third law. First citation in article

Full figure (3 kB)
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Fig. 6. Diagram for applying Newton's second law to an object sliding without friction in a circular orbit on the Spandex. First
citation in article

Full figure (7 kB)

Fig. 7. Data from Fig. 5. Plotted as ln(T) vs ln(R2/M1/2), where T is the period for near circular orbits. The line (not a fit) has
slope 1/3 and represents the prediction from Newton's second law in the limit of small tangent angles for the Spandex. The y
intercept of this line corresponds to A = 0.5 (m/kg)1/3, as does the line in Fig. 2. First citation in article

Full figure (29 kB)

Fig. 8. Scientists intently preparing for orbital experiments about a binary system using an earlier rectangular Spandex. There are
two masses hanging from the cloth, separated by about 1 m, and causing the indentations into which the balls eventually
descend. One author (GDW) recently visited The Franklin Institute in Philadelphia, PA, and was surprised to see a similar
surface (albeit rigid) that clearly had been in use for years to demonstrate orbits around binary systems. First citation in article

FOOTNOTES

aPresent address: American Institute of Physics, Education Division, one Physics Ellipse, College Park, MD 20740; electronic
mail: gswhite@peoplepc.com

bElectronic mail: michaelwalker_256@yahoo.com
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