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We provide a comprehensive discussion of the corrections needed to accurately measure the acceleration of
gravity using a plane pendulum. A simple laboratory experiment is described in which g was determined to
four significant figures of accuracy.

I. INTRODUCTION

The simple pendulum is of historic and basic importance.
Its approximate isochronism, discovered by Galileo, makes it
an accurate and simple timekeeper and, in the hands of
Newton, resulted in the first evidence that inertial and
gravitational masses are proportional. Until relatively
recently the plane pendulum provided the most accurate and
convenient method for measuring the local gravitational
acceleration. These acceleration measurements provided the
earliest information on the shape and mass distribution of the
earth.1, 2, 3, 4, 5

It is in the determination of the local gravity that the
pendulum is usually employed in the student laboratory. One
of the most interesting aspects of such a simple system is the
rich variety of physics involved when the ideal pendulum is
compared to a real experiment. It should be emphasized that
as higher accuracy is demanded of an experiment, the
theoretical description of the apparatus must become more
realistic. In many cases the physics involved in this more
sophisticated picture is at least as, if not more, interesting
than the original idealized case. In this article we illustrate
the analysis with the results of an actual laboratory
experiment and describe the corrections necessary to attain
an accuracy of one part in 10 000 for the acceleration of
gravity.

II. EXPERIMENTAL PROCEDURE AND RESULTS

For a point pendulum supported by a massless,
inextensible cord of length l the equation of motion for
oscillations in a vacuum is

( / )sin 0,g lθ θ+ =!! (1)

where /d dtθ θ≡! . For infinitesimal displacements we
replace sinθ  by θ  and the motion is simple harmonic with
period

1/ 2
0 02 ( / ) 2 / .T l gπ π ω≡ ≡ (2)

If the cord length and the period are known, we can solve for
the acceleration of gravity

2 2
04 / .g l Tπ= (3)

The fundamental experimental problem is then to measure l
and 0T .

To attain a given precision in the acceleration of gravity,
one must know the required precision for the measurements
of length and time. The errors in g resulting from an error in
l  or 0T  may be estimated from the relations

2 2
0(4 / )g lTσ π σ=  and 

0

2 3
0(8 / )g Tl Tσ π σ= ,respectively. The

total error is the square root of the sum of the squares of the
individual errors. The period measurement is relatively easy
since the result is cumulative. For a precision of one part in
104, with a pendulum 3 m long, the time for 100 oscillations
must be

Fig. 1. Dimensions of the pendulum apparatus. Values are given in cm.

measured to within 0.02 s. The limiting measurement is the
cord length. In order to achieve one part in 104 precision a
cord length of 3 m must be measured to a precision of
0.3 mm, near the practical limit for the student laboratory.
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For our experiment we used the Leybold “ball with
pendulum suspension”6 shown in Fig. 1. The pendulum ball
was 6.10 ± 0.01 cm in diameter, having mass 856.7 ± 0.1 g
and suspended by a fine, stranded steel wire. The pendulum
suspension consists of a small ring fit with a needle facing
inward that rests in a socket at the end of a screw hook
attached to the ceiling. The wire passes through a hole in a
small screw cap on top of the ball. The length of the wire
was measured in its static position with the aid of a second
wire trimmed until its ends were exactly flush with the
bottom of the ring and the top of the cap and then measured
to the nearest tenth of a millimeter using a pair of 2-m sticks
placed end to end. The dimensions of the ball, ring, and cap
were measured with vernier calipers. The total distance
between the point of support and the center of the ball was
3.0044 ± 0.0003 m The time for 100 oscillations was
measured for ten trials using a handheld electronic stopwatch
which provided digital readings to the nearest hundredth of a
second. The principal sources of error were human reaction
time and judgment of the instant when the pendulum reached
the end of its swing. The measurements are recorded in
Table I. The experimental period for the ten trials is

3.478 80 0.000 17 sT = ± (4)

Table I. Measurements of pendulum period.

Trial Time for 100 oscillations
100 T

(s)

Period
T
(s)

1 347.84 3.4784
2 347.87 3.4787
3 347.86 3.4786
4 347.91 3.4791
5 347.91 3.4791
6 347.94 3.4794
7 347.84 3.4784
8 347.81 3.4781
9 347.84 3.4784

10 347.98 3.4798

If T were equal to T0 the corresponding acceleration due to
gravity according to Eq. (3) would be

29.8007 0.0014 m/sg = ± . (5)

However, once the length and period are measured, a large
number of corrections must be applied since any actual
pendulum deviates from the idealized assumptions
underlying Eq. (3).

III. PENDULUM CORRECTIONS

If a given real pendulum results in a period of oscillation
T, we may write

0 0 0(1 / ),T T T T T T= + ∆ = + ∆ (6)

where T0 is the idealized period of Eq. (2). We may still use
Eq. (3) to compute g if we use the equivalent ideal pendulum
period from Eq. (6),

0 0(1 / ).T T T T T T= − ∆ − ∆" (7)

In applying Eq. (7), T is the measured period and ∆T is the
theoretical correction relating the actual pendulum to the
ideal pendulum. There are many such corrections depending
on the desired level of accuracy. The corrections for finite
amplitude and finite mass distribution are well known and
we shall consider them only briefly; the effects of the air are
not as well known and shall be discussed in greater detail. It
is also necessary to consider elastic corrections due to wire
stretching and motion of the support.

A. Finite amplitude correction

An exact analytic solution7 to Eq. (1) involves the
Jacobian elliptic sine function. The period may be expressed
in terms of the complete elliptic integral of the first kind.8

For small angular displacements Eq. ( I ) can also be solved
by a perturbation expansion.9 The correction to the period is

2

2 0
2 2

10

2 4
0 0

(2 )!
sin

22 ( !)

1 11

16 3072

n

n
n

T n

T n

θ

θ θ

∞

=

 ∆  =      

= +

∑

#

, (8)

where 0θ  is the maximum angular displacement in radians.

For all of our measurements the amplitude was 3.0° ± 0.3°,
which was measured with a large demonstration protractor.
The effect of this correction is to make the ideal period
longer by ∆T = 596 µs. In addition to lengthening the period,
the finite pendulum displacement introduces an admixture of
higher harmonics which can be observed by a Fourier
analysis of the time-dependent displacement.10

B. Mass distribution corrections

A real pendulum bob has a finite size and the suspension
wire has a mass. In addition, as in our case, the wire
connections to the bob and the support may have some
structure. All such effects are encompassed in the physical
pendulum equation

1/ 22 ( / )T I Mghπ= (9)

where I is the total moment of inertia about the axis of
rotation, M is the total mass, and h is the distance between
the axis and the center of mass.

1. Uniform spherical bob of radius a

For the bob 2 2[1 (2 / 5)( / ) ],  and .I ml a l M m h l= + = =
Thus

2
0/ (1/ 5)( / )T T a l∆ = (10)

For a = 3.05 cm and l = 300.44 cm this correction leads to
72 T sµ∆ = +

2. Wire connections



The Pendulum—Rich physics from a simple system
Robert A. Nelson and M. G. Olsson, Am. J. Phys., Vol. 54, No. 2, February 1986

3

In our case a small ring supported the pendulum at the
upper end. For the bob and ring 2

rI ml I= + and

r rMh ml m d= + , where mr  is the mass of the ring, Ir  is its

moment of inertia, and dr is the distance between the pivot at
the end of the needle and the center of the ring. Thus the ring
requires a correction

2
0

1 1
.

2 2
r r rm d IT

T m l ml

∆      = − +          
(11)

The values of mr and dr. are 65.0 g and 0.65 cm,
respectively. Also, the ring has an inner radius ri = 1.75 cm
and an outer radius ro = 2.40 cm, and so

2 2 2 21
4[ ( )] 171 g cmr r r i oI m d r r= + + = ⋅ . Therefore, Eq. (11)

gives 282T sµ∆ = − .

A small cap attached the wire to the pendulum bob. The
cap requires a correction

( )1
0 /2/ ( )( / ),c m cT T m d l∆ = − (12)

where mc is the mass of the plastic cap, not including its
threaded screw, and dc is the distance between its center of
mass and the center of the bob. For mc = 4.4 g and
dc = 3.9 g we obtain ∆T = - 116 µs. Similarly, the difference
in densities between the aluminum screw and the steel bob
produces a mass deficit ms = - 6.1 g at a distance ds = 2.3 cm
and implies a correction ∆T = + 95 µs.

3. Mass and flexibility of wire

For the bob and wire of mass 21
3, ( )w wm I m m l= + and

1
2( )wMh m m l= + . The period correction to first order in the

mass ratio /wm m is

0/ (1/12)( / )wT T m m∆ = − (13)

Hence the finite mass of the wire reduces the period. To
this level of precision it does not matter whether the wire
acts as a rigid rod or as a flexible string.11, 12, 13 For
mw = 1.367 g and m = 856.7 g we obtain ∆T = - 463 µs.

By an extension of the analysis of Ref. 11 we find that the
second-order correction for a flexible wire is

2
0/ (71/1440)( / )wT T m m∆ = + . However, for a rigid rod it is

2
0/ (55 /1440)( / )wT T m m∆ =  by Eq. (9). Thus if the cord is

flexible the period is slightly greater than if it is rigid. In our
case these terms give ∆T = + 0.44 and
 + 0.34 µs, respectively, and the difference is + 0.10 µs.

For completeness we should comment that when a flexible
string connects the various parts of the pendulum it is
possible that higher modes of motion of the system might be
important. For the bob, its rotation about the point of contact
with the wire will be most important.14 The effect of this
rotation correction is to multiply Eq. (10) by the factor
1 (2 / 5)( / )a l+ , a negligible correction in most cases since

the correction of Eq. (10) itself is usually small. For our
experiment the rotation contribution is ∆T = + 0.29 µs.

The support ring and the pendulum bob also form a
double pendulum, which changes the ideal period slightly.
By the usual theory of small oscillations applied to the
double pendulum,15 the possible frequencies are given by

1
2

2 1 1 2 1 2 1
2

2 1 1 2 2 1 2 1 1 2

4( / )[1 / ]1
1 1 1

2 [1 ( / ) ( / ) ( / )]
r r r r r r

r r r r

l m d I ml l I ml l m d mlg

l ml ml l I l l l m d ml I ml l
ω

    + = + + + ± −   + + +     
, (14)

where 1 0rl d r= +  is the distance between the pivot and the

edge of the ring and l2 is the length of the pendulum wire.
Taking the negative sign for 0ω ω"  and carefully expanding

the square root, we find that the correction to the period is

2
0

2 2

1

1 1

2 2

1

2

r r r

r r

m d IT

T m l ml

m d

m l l

∆      = − +          
   +        

, (15)

where 1 2l l l≡ + . The first two terms represent the mass

correction obtained above in Eq. (11). The third term is the
double pendulum correction. This term implies ∆T = + 4.6
µs, a negligible amount. However, note that once again
flexibility produces a positive correction, as in the rotation of
the bob and in the bending of the wire itself.

C. Air corrections

Normally a pendulum experiment will take place in air.
There are several ways in which the air changes the
measured period.

1. Buoyancy

By Archimedes’s principle the apparent weight of the bob
is reduced by the weight of the displaced air. This property
has the effect of increasing the period since the effective
gravity is decreased. The correction is

1
0 2/ ( )( / )aT T m m∆ = , (16)

where ma is the mass of the air displaced by the pendulum
bob. The atmospheric pressure was 100.44 kPa (753.4
mmHg) and the temperature was 25.5 °C; the molecular
weight of dry air is 0.02896 kg/mol. Thus the air density was
1.171 kg/m3. The volume of the pendulum ball is
118.8 cm3 (calculated) and the volume of the cap is 4.0 cm3

(by displacement of water), so ma = 0.1438 g. Therefore
∆T = + 292 µs.
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2. Damping

The resistance of the air acts on both the pendulum ball
and the pendulum wire. It causes the amplitude to decrease
with time and increases the period of oscillation slightly. The
law of force on any component of the system is determined
by the Reynolds number for that component, defined as

/R VLρ η≡ , (17)

where ρ and η are the fluid density and viscosity, V is a
characteristic velocity, and L is a characteristic length. The
drag force is usually expressed in the form

21
2 DF C A vρ= , (18)

where the drag coefficient CD, is a dimensionless number
which is a function of the Reynolds number. For values of R
of the order 1 or less, the force is proportional to the velocity
and CD is proportional to R-1. For values of R of the order
103 to 105 the force is proportional to the square of the
velocity and CD is a constant. In our experiment ρ = 1.171
kg/m3 and η = 1.853 × 10-5 Pa ∙s. The diameter of the wire
was 0.320 ± 0.002 mm. The maximum Reynolds number
based on diameter for the ball was 1100, where the quadratic
force law should apply, while the maximum value based on
diameter for the wire was 6, where the linear force law
should prevail.

Since the damping force is neither linear nor quadratic,
but rather a combination of the two, it makes sense to
establish a damping function which contains both effects
simultaneously. We compute the decrease in amplitude in a
simple physical way using the work-energy theorem.16 The
work done by a damping force

2| |F b v cv= + (19)

acting on the center of mass over the first half-period is
0 0/ / 2

0 0
 ( )  W Fv dt bv cv v dt

π ω π ω
= − = − − +∫ ∫ . (20)

Since W is much smaller than the pendulum energy we can
use

0 0cos tθ θ ω= (21)

to compute the bob velocity and evaluate Eq. (20). The result
is

2 31 4
0 0 0 0 0 02 3( / )( ) ( / )( )W b l c lπ ω ω θ ω ω θ+" . (22)

By conservation of energy this work must equal the decrease
in potential energy at the turning points

0 0W PE mglθ θ= −∆ − ∆" , (23)

The change in amplitude ∆θ0AO, occurs in time π /ω0, so we
obtain a differential equation

Fig. 2. Decay of amplitude with respect to time. The solid curve is given by
Eq. (25) with parameters given by Eqs. (28) and (29). The standard error
for a single measurement estimated from the residuals is 0.3º in agreement
with the estimated uncertainty of the observations.

20
0 0

d

dt

θ αθ βθ= − − (24)

which is directly integrated to give

0 0 0/[ (1 ) ]t t
m m eα αθ αθ ε βθ α− −= − , (25)

where 0 0mθ θ= at t = 0 and where the constants α and β are

given by
1
2 ( / )b mα = (26)

and
4

03 ( / )( / )cl mβ ω π= (27)

To test this damping formula we use the data shown in
Fig. 2. The initial amplitude was θ0m = 17.5 ± 0.3°. Using a
nonlinear regression routine we vary the parameters α and β
to optimize the fit of the data. As seen by the solid curve in
Fig. 2, the fit is excellent and the fitted parameters are

4 1(2.49 0.11) 10 sα − −= ± × (28)

and
3 1 -1(3.17 0.03) 10 s radβ − −= ± × ⋅ . (29)

Later in this article we will interpret these parameters in
terms of the physical damping constants b and c of Eq. (19).

In order to determine the correction to the period we must
consider the differential equation of motion. Since both
damping forces are small we can take them as independent
perturbations.17

For linear damping and small oscillations the equation of
motion is
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2
02 0θ αθ ω θ+ + =!! ! , (30)

where / 2b mα = . With initial conditions 0mθ θ=  and

0θ =! at t = 0 the solution is18

0 0

0

( / ) cos( )

[cos ( / ) sin ]

t
m

t
m

e t

e t t

α

α

θ θ ω ω ω δ
θ ω α ω ω

−

−

= −

= +
(31)

where 0cos /δ ω ω= and
2 1/ 2

0 0[1 ( / ) ]ω ω α ω= − (32)

The damping term 2αθ!  in Eq. (30) causes the amplitude to
decrease as

0 0
t

me αθ θ −= (33)

This result follows from Eq. (25) for 0β = . There is also an

increase in period given by
21

0 02/ ( )( / )T T α ω∆ = . (34)

Using the experimental value of α  we obtain
0.033 sT µ∆ = , which is negligible.

Next consider quadratic damping. Unlike the case of
linear damping, an exact solution is not possible. An
additional complicating feature is that the equation of motion
is not even analytic since the sign of the force must be
adjusted each half-period to correspond to a retarding force.
The problem can be solved by means of a perturbation
expansion using the method of Lindstedt and Poincaré19, 20, 21,

22 as applied to the associated analytic problem where the
sign of the force is not changed. In the constant sign case the
first half-period is damped and the second half-period is
negatively damped. The resulting motion is periodic so the
Lindstedt–Poincaré method can be used. Only the first half-
period corresponds to our damped pendulum problem, but
the solution can be reapplied for subsequent half-periods.

The equation of motion corresponding to damped motion
for the first half-period is

2
0 0θ εθ ω θ− + =!! ! , (35)

where /cl mε ≡ . We look for a periodic solution with
period 02 /T π ω= . The damping term introduces higher

harmonics into the solution and also changes the period in a
way that depends on the amplitude. We define a new
independent variable

tφ ω≡ (36)

and convert Eq. (35) into the form
2 2 2 2

0" ' 0ω θ εω θ ω θ− + = , (37)

where ' /d dθ θ φ≡ . We develop a perturbation expansion in

terms of the small dimensionless parameter ε :
2

0 1 2θ ψ εψ ε ψ= + + +# , (38a)
2

0 1 2ω ω εω ε ω= + + +# , (38b)

The correction to the period is obtained from the requirement
that the solution must be periodic, i.e., that it does not
contain any secular terms which increase monotonically with
time.

Substituting Eqs. (38) into Eq. (37), retaining terms
through order 2ε , and setting the factors of each power of ε
equal to zero (since the equation must hold for any value of
ε , we obtain the following system of equations:

''
0 0 0ψ ψ+ = , (39a)

'' '' ' 2
1 0 0 1 1 02( / ) 0ω ω ψ ψ ψ ψ+ + − = , (39b)

2 '' ''
2 0 1 0 0 1 0 1

''
2 2

'2 ' '
1 0 0 0 1

[2( / ) ( / ) ] 2( / )

2( / ) 2 0

ω ω ω ω ψ ω ω ψ
ψ ψ
ω ω ψ ψ ψ

+ +

+ +

− − =

. (39c)

We solve these equations recursively. The solution to Eq.
(39a) such that 0 0ψ = and '

0 0ψ =  at 0φ =  is

0 0 cosψ θ φ= . (40)

Substituting Eq. (40) into Eq. (39b) and using the identity
2 1 1

2 2sin cos 2φ φ= − we obtain
''
1 1 1 0 0

2 21 1
0 02 2

2( / ) cos

cos 2

ψ ψ ω ω θ φ
θ θ φ
+ =

+ −
41)

The first term on the right introduces a term

1 0 0( / ) sinω ω θ φ φ into the general solution. However, this

latter term is a secular term, i.e., it does not satisfy the
condition that the solution must be periodic. Therefore, we
must have

1 0ω = . (42)

The solution to Eq. (41 ) that satisfies the initial conditions

1 0ψ = and '
1 0ψ = at 0φ = is then

21
1 06( ) (3 4cos cos 2 )ψ θ φ φ= − + (43)

Hence at the end of the first half-cycle atφ π=  the

amplitude is
4

1 0 03[1 ( ) ]θ θ εθ= − − . (44)

Since the perturbation method assumes that the motion is
periodic, it predicts that the pendulum would return to its
original amplitude 0θ  at the end of the second half-

oscillation. However, the only physically relevant solution
corresponds to the interval 0 /t π ω≤ ≤ . During the next
interval / 2 /tπ ω π ω≤ ≤  the damping force has the
opposite sign and so Eq. (35) does not apply. If we make the
transformation θ θ→ −  we can recover Eq. (35) and solve
the problem for the new initial amplitude 1θ . Thus at the end

of the second half-cycle the amplitude is
4

2 1 13[1 ( ) ]θ θ εθ= − , (45)

The amplitude gradually decreases as expected. Since the
decrease in turning point 0 1| |θ θ θ∆ = −  occurs in time

0/t π ω∆ = , we can convert Eq. (44) into a differential

equation which when integrated yields the amplitude as a
function of time

1
0 0 0(1 )m mtθ βθ θ−= + . (46)
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This result follows from Eq. (25) in the limit 0α → . Note
that at large times the falloff is only inversely proportional to
the time and not exponential as in Eq. (33), since the
damping force falls off more rapidly as a function of
velocity.

To obtain the correction to the period we must proceed to
the second order and substitute Eqs. (40), (42), and (43) into
Eq. (39c). The condition that there must not be any secular
terms implies

21
2 0 06( )ω θ ω= − . (47)

Therefore, the correction to the period is
2 2 2 21

0 0 0 06/ ( ) (3 / 32)( / )T T ε θ πβ ω θ∆ = = . (48)

Using the experimental value of β  we obtain

0.027 sT µ∆ = , which is negligible.

In addition to having a small direct effect on the period,
air resistance also has an indirect effect through the
correction for finite amplitude. Suppose the amplitude
decays from its initial value 0mθ  to the value 0 fθ  during

the time of measurement ft . Then the period at some

intermediate time is 0 0( ) [1 ( ) / ]T t T T t T= + ∆  and the mean

period as determined by counting oscillations is

0 0(1 / )T T T T= + ∆ , where the mean correction is given by

2
00

0 00

1 ( ) 1
[ ( )]

16

f
f

t
t

f f

T T t
dt t dt

T t T t
θ∆ ∆= =⌠


⌡ ∫ . (49)

The total accumulation of phase is

2 / ( ) 2 /fdt T t t Tφ π π= ∫ "  and the number of oscillations is

/ 2 /fn t Tφ π= " . Substituting Eq. (25) into Eq. (49) and

carrying out the integration, we obtain

0 0
0

0 0 0

1 /1
1 ln

16 1 /
f m

m
f m f

T

T t

θ βθ ααθ
β θ β βθ α

   +∆ = − −   +   
, (50a)

where

0 0(1/ ) ln[(1 / ) /(1 / )]f f mt α α βθ α βθ= + + . (50b)

By Eq. (25) 00.869of mθ θ=  after 100 oscillations in a time of

observation 347.880 sft =  for an initial amplitude

0 3.0mθ = ° . Therefore, 519 sT µ∆ = . The difference caused

by damping between this value and that calculated from Eq.
(8) assuming constant amplitude is – 77 µs, which is not
negligible.

If we take the limit, 0β →  by expanding the logarithm in

Eq. (50a) through terms of the second order, we obtain
2 2
0 02 2

0 0

0 0 0

1
( )

32 32ln( / )
m f

m f

f m f

T

T t

θ θ
θ θ

α θ θ
−∆ = − = , (51)

in agreement with a formula derived by Jeffreys3, 4 for linear
damping. By Eq. (33) 0 00.917f mθ θ=  and so 547 sT µ∆ = .

The effect caused by linear damping is thus – 49 us. If
instead we take the limit 0α →  we obtain

0 0 0 0

0

1 1
( )

16 16m f m f

f

T

T t
θ θ θ θ

β
∆ = − = . (52)

By Eq. (46) 0 00.945f mθ θ=  and so 564 sT µ∆ = . The effect

caused by quadratic damping is thus – 32 µs. The sum of the
values for the two effects considered separately is nearly
equal to the exact value when both effects are considered
together.

3. Added mass

As the bob’s motion varies during the pendulum cycle, the
motion of the air surrounding the bob also varies. The kinetic
energy of the system is thus partly that of the air. The
effective mass of the system therefore exceeds the bob mass.
The kinetic energy of the air can be taken into account by
attributing an “added mass” m' to the bob’s inertia (but not
weight) proportional to the mass of the displaced air1:

am mκ′ = , (53)

where κ  is a constant. The correction to the period is
1

0 2/ ( )( / )aT T m mκ∆ = . (54)

The added mass accounts for the stirring of the air, which
is part of the total system. Some air is also dragged along
with the pendulum. In contrast, damping is a dissipative
effect which results in the loss of energy to the system as a
whole by conversion into heat. The need for the added mass
correction was noted by Bessel in 1828.1 Previously, it had
been commonly thought that the only correction required
owing to the air was that of buoyancy. (The added mass
effect had been discovered independently by Du Buat in
1786, but it was not until after the appearance of Bessel’s
memoir that Du Buat’s work attracted attention.) The
dependence of added mass on viscosity was derived by
Stokes in 1850.1

For steady motion in a perfect (nonviscous) fluid the
kinetic energy of the air can be computed23 from the velocity
potential. The axially symmetric potential satisfying the
conditions 0rv =  at r a=  on the surface of the spherical

bob and 0 ˆv v z=  at infinity is
3 2

0 ( / 2 )cosv r a r θΦ = − = . (55)

Therefore, the velocity of the fluid is

( )

0

3

1
0 2

1 ˆ ˆˆ ˆv (cos sin )

ˆˆcos sin

r v r
r r

a
v r

r

θ θ θθ
θ

θ θθ

∂Φ ∂Φ = − + = − ∂ ∂ 

 − +  

. (56)

The first term represents a constant fluid flow since
ˆˆ ˆcos sinr zθ θθ− = . In a reference frame at rest in the fluid

3 1
0 2

ˆˆv ( / ) (cos sin )v a r rθ θθ= − + . (57)

The kinetic energy of the fluid flow is
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2 2 3 2
0 0v

1 1
KE V=

2 3 4 av d v a m v
πρ ρ= =∫ . (58)

This is one-half the kinetic energy of the displaced fluid.
Therefore, the result is that 1

2κ =  and the effective mass of

the pendulum is the bob mass plus one-half the mass of the
displaced fluid.

In reality the value κ is greater than ½ because the motion
of the bob is accelerated and the fluid has viscosity.
Neglecting buoyancy, the force on the spherical bob due to
the air may be expressed as24, 25, 26, 27, 28

2

2 1/ 2 1/ 2

1 1
| |

2 2

6 ( ) ( )

D A a

t

H

F C a v v C m v

dv
C a t s ds

ds

π ρ

πρη −

−∞

− = +

+ −⌠
⌡

!
. (59)

The first term is the drag force for steady motion given by
Eq. (18) and the second term is the “added mass”
contribution due to the kinetic energy imparted to the fluid.
The third term involves the “history integral” which takes
into account all previous motion; the force on the bob is
partly determined by the effects of decaying vortices made at
earlier times. The factors CA, and CH are empirical factors
that depend on the relative importance of the convective
acceleration compared to the local acceleration.

For oscillatory motion the history term in Eq. (59)
becomes1,  29 2 2(3 / )(2 )HC a v vπ δ η δ ρ+ ! , where the

penetration depth is defined as 1/ 2
0(2 / )δ η ω ρ≡ . Therefore,

the equation of motion of the pendulum bob is

2

2

1 9
6

2 4

1
| | ( ) sin 0

2

A H a H

D a

m C C m v C a v
a

C a v v m m g

δ ηπ
δ

π ρ θ

  + + +    

+ + − =

!
. (60)

Measurements on a sphere executing simple harmonic
motion in a liquid indicate that the empirical factors CA and
CH are given by27, 28

2 22.10 0.132 /(1 0.12 )A A AC M M= − + , (61a)
3 30.48 0.52 /(1 )H A AC M M= + + , (61b)

where 2| / |AM vd v≡ !  is the acceleration modulus for a

sphere of diameter d. The parameter CA is evaluated at
3

0 4( )tω π= , where the history term is zero, while the

parameter CH is evaluated at 1
0 4( )tω π= , where the history

term is maximum.27 For a pendulum executing oscillatory
motion the acceleration modulus for both parameters is thus

02 /AM d lθ= . In our case MA =0.55 so CA = 2.06 and

CH = 0.50. In the limit 0v → , AM →∞  and CA = CH = 1.

The first term in Eq. (60) contains the added mass
correction

91
2 4' ( / )a A H am m C C a mκ δ= = +   . (62)

For CA = 1 and δ = 0, κ= ½,  as we obtained above for
steady motion in a perfect fluid. However, with acceleration
and viscosity taken into account we obtain κ = 1.18. The
added mass m’ is 0.02% of the bob mass. This theoretical
result is in agreement with the classical pendulum
experiments of the 19th century,1, 30 The added mass
correction to the period for our experiment by Eq. (54) is

346 sT µ∆ = + . If the pendulum were a clock, it would lose

8.6 s in one day on account of added mass (and another 7.3 s
due to buoyancy) compared to a similar pendulum swinging
in a vacuum.31

4. Theoretical damping constants

The drag coefficient for a sphere is usually described by a
graph derived from experimental data.32 Many formulas have
been proposed to represent this curve over various domains
of the Reynolds number.33 One convenient formula that has
recently been suggested is34

1/ 2

24 6 24
0.4 '

1D DC C
R RR
+ + ≡ +

+
" . (63)

Equation (63) is based on a fit of experimental data and is
accurate to within 10% over the domain 0 < R < 2×105. At
about 52.5 10R ×"  the boundary layer changes from laminar
to turbulent and there is a sudden decrease in drag. The first
term corresponds to the linear Stokes’s law1 and the third
term represents the Newtonian 2v  law. The second term
accounts for the transition between these two limits. It is
nearly constant over most of the oscillation and we shall
evaluate it using the rms velocity. The sum of the last two
terms C'D is then 0.61. Thus by Eq. (60) we obtain

21
2( ) 6 [1 ( / )] ' | |

( ) sin 0
a H D

a

m m v a C a v C a v v

m m g

κ πη δ π ρ
θ

+ + + +
+ − =

!
. (64)

The linear drag constant b is 0.49×10-4 kg/s and the quadratic
drag constant c is 1.04×10-3 kg/m.

The pendulum wire may be represented as a circular
cylinder of infinite length. The drag coefficient35 for
Reynolds number 1 < R < 10 is approximately (empirically)
given by

(10 / ) 2DC R +" , (65)

where the Reynolds number is based on wire diameter. The
added mass term36 is negligible. No formulas are available
for the history term for a cylinder but it, too, should be
negligible since a fully developed wake does not form until

250R " . The force per unit length on the wire is then

21
[ ( )]

2 D

dF
C D v x

dx
ρ= , (66)

where D is the wire diameter, x is the distance of the wire

element from the fulcrum, and ( )v x xθ= !! . The force acting

on the pendulum center of mass equivalent to the total force
acting on the wire is
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2

0

1 5 1

3 4

l dF
F x dx lv Dlv

l dx
η ρ= = +⌠

⌡
, (67)

where v lθ= ! . For the wire we obtain b = 0.93×10-4 kg/s and
c = 0.28×10-3 kg/m. One interesting observation is that the
linear drag constant is independent of the wire diameter. This
is true as long as CDR is constant, but breaks down for very
small Reynolds numbers (or wire diameters). For 1R$  the
drag coefficient for a long cylinder is37

1
2(8 / ) /[ ln( / 8)]DC R Rπ γ= − − , (68)

where 0.5772γ " is Euler’s constant. This result is the

analog of Stokes’s law for a sphere.
Another source of damping is friction at the point of

support. Since the area of contact of the needle with the
support is very small, the pressure is extreme. The adhesion
between the two surfaces in contact will continually be
formed and broken as the pendulum swings to and fro. In
addition, the metal may suffer from fatigue and some motion
will be communicated to the support. These effects will not
materially influence the period, where they enter as
corrections of the second order, but their contribution to the
damping will not be negligible.

The experimental values of the drag constants from Eqs.
(26) - (29) are b = 2ma = (4.27 ± 0.19) × 10-4 kg/s and
c = (3/4)(πm/lω0)β = (1.18 ± 0.01) × 10-3 kg/m. The
calculated values of the total drag constants are
b = 1.42 × 10-4 kg/s and c = 1.32 × 10-3 kg/m. The quadratic
drag constants agree within 12%, but the calculated linear
drag constant is only one-third the experimental value. The
remainder must be attributed to damping by the suspension
system. Stokes1 found that the calculated rate of decrease of
arc was about one-half the measured rate. However, when
Stokes subtracted the logarithmic decrement for a pendulum
in a vacuum from the logarithmic decrement for the same
pendulum in air, the result was in almost exact agreement
with the calculated value. Thus Stokes’s analysis supports
the interpretation of residual damping loss to the support
system.

Since the drag coefficient of a sphere experimentally
varies greatly depending on smoothness and other surface
effects, it would be interesting to derive it from the measured
data. If we subtract the contribution of the wire from the
experimental quadratic drag constant, we obtain
c = (0.90 ± 0.01) × 10-3 kg/m. The experimental drag
coefficient for the sphere, corresponding to the v2 drag law,
is therefore C'D = 2c/πa2ρ = 0.53 ± 0.01.

D. Elastic corrections

A real pendulum has neither an inextensible wire nor is it
mounted on a perfectly rigid support. The latter effect is
difficult to calculate, but can be essentially eliminated using
a massive, rigid support. The string stretching effect can be
estimated using Hooke’s law.

1. String stretching

The length of the pendulum is increased by stretching of
the wire due to the weight of the bob. The effective spring
constant for a wire of rest length l0 is

0/k ES l= (69)

where E is the elastic modulus (Young's modulus) and S is
the cross-sectional area. For steel E = 2.0 × 1011 Pa. Thus by
Hooke’s law the increase in length is

0/ /l mg k mgl ES∆ = = . (70)

For our pendulum ∆l = 1.6 mm, which is clearly not
negligible. However, the length of the pendulum was
measured while the pendulum was suspended in its static
position. Thus this increment was automatically included in
the total measurement.

There is also dynamic stretching of the wire from the
apparent centrifugal and Coriolis forces acting on the bob
during its motion. We can evaluate this effect by adapting a
spring-pendulum system analysis38 to the nearly stiff limit.
Starting with the kinetic and potential energies defined by
Eqs. (2) of Ref. 38, we modify the calculation for the nearly
stiff spring case by changing from rectangular to polar
coordinates:

0sin (1 )sinx l zθ ξ θ= = + , (71a)

0 0cos [1 (1 ) cos ]z z l zθ ξ θ= − = − + , (71b)

where z0 = l0 + mg/k is the static pendulum length, l = z0 (1 +
ξ) is the dynamic length, ξ is the fractional string extension,
and θ is the deflection angle. The equations of motion for
small deflections are

2(1 ) 2 0pξ θ θξ ω θ+ + + =!! ! , (72a)

2 2 2 21
2 0s pξ ω ξ θ ω θ+ − + =!! ! , 72b

where 1/ 2
0( / )p g zω ≡  is the pendulum frequency and

1/ 2( / )s g mω ≡  is the spring (string) frequency. We look for

a solution of the form

0 cos tθ θ ω= , (73a)

cos 2a b tξ ω= + , (73b)

since for a stationary mode the ξ (spring) motion must
oscillate exactly twice as fast as the θ (pendulum) motion.38

Substituting Eqs. (73) into Eq. (72a) and retaining only the
first harmonic, we obtain

2 23
2[ (1 ) ]cos 0p a b tω ω ω− + − = . (74)

Since Eq. (74) must hold for all t, the coefficient of cos ωt
must be zero, so for small a and b,

31
2 4(1 )p a bω ω= − + . (75)

Equation (72b) then becomes
2 2 2 2 2 2 21

04

2 2 21
04

[ ( 2 ) ] [ 4 4 )

( 2 ) ]cos 2 0

s p s

p

a b

t

ω ω ω θ ω ω ω

ω ω θ ω

+ − + − −

+ + =
. (76)
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Both terms must vanish since the lowest neglected harmonic
is the third. Since s pω ω ω% " ,

2 21
04( )( / )p sa ω ω θ= , (77a)

2 23
04( )( / )p sb ω ω θ= − . (77b)

The change in pendulum length thus fluctuates between
21

0 02( )( / ) 2.2 mz mg kξ θ µ= − = − at 0θ θ= and
2

0 0 0( / ) 4.4 m at z mg kξ θ µ θ θ= + = + = . By Eq. (75) the

resonant frequency is
2 2

0[1 (11/16)( / ) ]p p sω ω ω ω θ= − . (78)

This yields a period correction of
2

2 2
0 0

0

11 11

16 16
p

s

T mg

T ES

ω
θ θ

ω
 ∆     = =          

. (79)

For our pendulum 3.4 sT µ∆ = , which is negligible.

2. Support motion

To get a feeling for how rigid and massive the pendulum
support must be, we model the support as a mass M kept in
place by a spring of constant K, as shown in Fig. 3. The
natural frequency of the support is thus

1/ 2( / )K MΩ = . (80)

The coupled equations for the system of Fig. 3 are
2
0 / 0x lθ ω θ+ + =!! !! , (81a)

2(1 / ) ( / ) 0m M x m M l xθ+ + +Ω =!!!! . (81b)

Equation (81a) implies that the effect of sway is to impart an
additional angular acceleration /x l−!!  to the pendulum for
small angles of oscillation. The frequency modes are found
as usual by assuming both coordinates are proportional to
cos tω . Thus letting 0 cos tθ θ ω= and cosmx x tω= we

obtain
2 2 2

0 0( ) ( / ) 0ml xω ω θ ω− + = , (82a)
2 2 2

0( / ) [(1 / ) ] 0mm M l m M xω θ ω+ + −Ω = . (82b)

For nontrivial solutions we must have
2 2 2

0

2 2 2 2 2 1/ 2
0 0

2 (1 / )

{[ (1 / ) ] 4 }

m M

m M

ω ω
ω ω

= Ω + +

± Ω + + − Ω
. (83)

By Eq. (82a) the horizontal displacement of the support
corresponding to frequency ω is

2
0 0[1 ( / ) ]mx lω ω θ= − − . (84)

The two limiting cases which follow are of interest to us.
a. Elastic rigidity: 0ω Ω$ for any m/M. Choosing the

negative sign in Eq. (83) for the lowest frequency mode and
expanding the square root, keeping terms to order 4

0( / )ω Ω ,

we obtain
2 2 2

0 0[1 ( / )( / ) ]m Mω ω ω= − Ω . (85)

Fig. 3. Model of motion of the support by a system with two degrees of
freedom.

The displacement of the support is
2

0 0 0( / )( / ) ( / )mx m M l mg Kω θ θ= Ω = (86)

and the period correction is
2

0

0

1 1

2 2

T m mg

T M Kl

ω∆       = =      Ω      
. (87)

b. Inertial rigidity:  0ωΩ$ . To get 0ω ω"  we use the

positive sign in Eq. (83) and the period correction is

0/ (1/ 2)( / )T T m M∆ = − . (88)

By comparing Eqs. (87) and (88) we see that the support can
either increase or decrease the period, depending on its
nature. For both cases we should have a very massive
support in order that the period be independent of the
support. If four-figure accuracy is required, the support
should be at least 104 times more massive than the pendulum
bob or the natural support frequency should exceed the
pendulum frequency by a factor of 100.

The assumption of elastic rigidity usually applies to most
practical cases. In high precision pendulum measurements3, 4

the constant K is either determined from interferometric
observations of xm or by means of a second pendulum of the
same length and suspended from the same support which
after time t acquires an amplitude 1

2( )( / )mx l tω . Clark4

points out, however, that vibration will be communicated to
the second pendulum by the surrounding air, as well as by
the support, and so this effect must be corrected or
eliminated.

We shall attempt an order of magnitude estimate of K.
The pendulum support was a hook that was screwed securely
into a wood beam in the ceiling of the laboratory.

The bending of the steel hook is negligible in comparison
to the yielding of the wood surrounding the hook. The elastic
constant for the wood is given approximately by

/K GA d= , (89)
where G is the shear modulus, A is the projected area of the
screw, and d is the thickness of the beam. In general, the
shear modulus G is between one-third and one-half of the
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elastic modulus E, which for wood is typically 1.0×1010 Pa.
Assuming A = 0.5 cm2 and d = 5 cm, we obtain
K = 4×106 N/m. If we accept this estimate as reasonable,
then xm = 0. 1 µm and ∆T= 1 µs, which is negligible.

IV. CORRECTED PERIOD

The corrections to the ideal period and the corresponding
changes in the computed acceleration of gravity are
summarized in Table II. Since all the corrections are small
we may assume that they add linearly. The net correction to
the period is 472 sT µ∆ = + . Therefore, by Eqs. (4) and (7)

the period of an equivalent ideal pendulum is

0 3.478 33 0.000 17 sT = ± (90)

and by Eq. (3) the measured acceleration due to gravity is
29.8034 0.0014 m/sg = ± . (91)

Table II. Summary of pendulum corrections.
Effect Correction

to ideal
period
∆T
(µs)

Correction
to gravitational

acceleration
∆g

(×10-5 m/s2)
Finite amplitude + 596. + 336.
Finite radius of bob + 72. + 41.
Mass of ring - 282. - 159.
Mass of cap - 116. - 65.
Mass of cap screw + 95. + 54.
Mass of wire - 463. - 261.
Flexibility of wire + 0.10 + 0.06
Rotation of bob + 0.29 + 0.16
Double pendulum + 4.6 + 2.6
Buoyancy + 292. + 165.
Linear damping + 0.033 + 0.019
Quadratic damping + 0.027 + 0.015
Decay of finite amplitude - 77. - 43.
Added mass + 346. + 195.
Stretching of wire + 3.4 + 1.9
Motion of support + 1. + 0.6
Total + 472. + 268.

This value is in agreement within 1 s.d. of the value
9.8012 ± 0.0035 m/s2 obtained previously for the same site
from the measurement of the acceleration of a freely falling
body.39 The latter value, however, did not take into account
the apparent added mass of the falling body due to the
motion of the air. If we represent the falling body as a “cigar-
shaped” ellipsoid of length 13.4 cm and diameter 2.39 cm,
the added mass is 0.050 times the mass of the displaced air.40

The correction41 to the measured acceleration is + 0.0003
m/s2 and the resultant value of gravity is 9.8015 ± 0.0035
m/s2.

The gravity value42 at a geodesic reference station 550 m
from the site is 9.802 531 5 ± 0.000 002 0 m/s2 referenced to
the International Gravity Standardization Net, 1971 gravity
base network.43  Taking into account slight corrections for
the differences in elevation and latitude, we obtain 9.8026
m/s2 as the actual value of g at the laboratory site.39 The

experimental values obtained by both methods agree with
this geodesic value within 1 s.d.

V. DISCUSSION

The simple pendulum is a useful didactic system that one
can repeatedly evaluate with success at virtually every level
of physics. Besides using the pendulum as a gravimeter, one
might test experimentally in greater detail some of the
physical effects we have discussed here and use a variety of
measurement techniques.44 In the spirit of performing an
experiment with relatively modest equipment that might be
found in any student laboratory, we have measured the
period with an ordinary stopwatch. However, it should be
possible to improve the determination of g by another order
of magnitude by measuring the period automatically with a
photoelectric device and by measuring the length with a
cathetometer. For a 1-m pendulum it would be necessary to
have a timing circuit that could measure the period with a
precision of 10 µs, or 1 ms for 100 oscillations.
Cathetometers are available commercially45 which have two
traveling telescopes mounted on a vertical bar whose scale
can be read with a vernier to 0.01 mm over a range of 100
cm. The effects of the air might be studied by using a smaller
pendulum suspended within an evacuated Bell jar. With
respect to damping, there seems to be no advantage to
replacing the usual pendulum knife edge with a needle.
However, the manufacturer intended our apparatus to be
used also as a Foucault pendulum and thus provided a
rotational degree of freedom.

If one wishes to push the experiment to six-figure
accuracy, as in past actual measurements in standards
laboratories, rather heroic efforts must be attempted. In the
measurement of gravity at the National Bureau of Standards
in Washington in 1935, Heyl and Cook3, 4 used a reversible
pendulum in the form of a uniform rod of fused silica. The
pendulum was provided with two planes, upon each of which
it could be swung in turn about a knife edge mounted in a
steel support. The equivalent period of an ideal pendulum is
expressed in terms of the two times of swing (adjusted to be
nearly equal) and the distance between the planes. The
apparatus was operated in a vacuum within a sealed case.
The observation room was temperature controlled. In
addition to the effects we have considered here, it was
necessary to take into account clock errors, variation in
temperature, change in length due to atmospheric pressure,
imperfections of the knife edge, and alignment errors.

The level of sophistication of the experimental apparatus
determines the precision of a measurement. The accuracy of
the measurement, however, depends on the analysis of all the
incidental factors that attend the experiment. Within those
incidental factors lies a rich variety of physics.
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