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NOT JUST THE USUAL COUPLED 
OSCILLATORS, and a diversion into 

two usual ones.



The Origin of My Study:

Questions from an horological equipment manufacturer friend piqued my interest in 
pendula.  One question was originally from one of his amateur horologist friends who 
sent me the first part of his article in the Horological Science Newsletter, in which he  
initiated a discussion on pendulum dissipation due to support compliance. 

Pendulum Support Loss Measured With a View to Optimal Design and Mounting - Part 1 

 Horological Science Newsletter, 2006-5  December 2006, by Alan W. Heldman



He measured the pendulum amplitudes of a Synchronome clock  
 mounted on a load bearing wall and in a free standing case with 
varying bob masses.  He found significant loss due to suspension 
movement, which he determined from the pendulum’s “steady 
state” amplitudes.  He then measured statically with a force 

gauge, and dynamically with the pendulum oscillating, the 
compliance of the two supports.  Curiously he found a 

discrepancy of about 2.5X.  He concluded that a “sort of 
resonance” was occurring.  This prompted him to construct the 

following apparatus to learn about “resonance” and perhaps 
model what was taking place. 





Beyond describing the apparatus and manually driving 
the spring oscillator, he didn’t further experiment.  So, 

intrigued and not having a similar apparatus, I 
numerically simulated a pendulum whose support is a 

spring oscillator.  After laboriously finding the 
Lagrangian and plugging into the formula, I, fortunately, 
because of my errors, found Cooper and Peregrine in 

Modern Analytic Mechanics, p. 117 had done this.  
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I then separated the accelerations with the following result:   
  

Q1:  d2X /dt2 = [LµPsinθ cosθ + Lµ(dθ /dt)2 − SX]/[1+ µsinθ2], and

Q2:  d2θ /dt2
= [−µ(dθ /dt)2sinθ cosθ /(1+ µ)+ SX cosθ /L(1+ µ)− Psinθ]/

                        [1− µcos2θ /(1+ µ)
Where: 
X =  cart's position, t=  time, L =  rod length,  µ = m/M  (bob and support masses), P =  g/L, 
θ =  rod angle wrt vertical, and S = K /M  (K =  spring's force constant)  
Note:  S2 is the spring oscillator's  natural frequency, and P2 is the pendulum's.  Also the coupling
is a positive function of µ. 
 



The following is my most recent True Basic 
program.  It’s a “leapfrog integration 

algorithm”.  The method is described in 
detail by Eisberg and Lerner (Physics/ 

Foundations and applications) and earlier by 
Feynman et alii (The Feynman Lectures on Physics).  

See also:  
http://en.wikipedia.org/wiki/Leapfrog_integration 

 Warning:  not tested.

http://en.wikipedia.org/wiki/Leapfrog_integration


!  Cooper and Pellegrini.txt  [exact] w/ viscous damping. This program finds position (X1 and theta) as a function of time and initial conditions.
!  Parameters:  delta t, initial positions, masses, rod length, spring constant, g= 10 N/m, etc.).  
PRINT "this is the first line and g = 9.8"
PRINT "input X1 (initial M1 position)"
INPUT X1
LET V1=0
PRINT "input X2 (initial pendulum displacement in radians)"
INPUT X2
LET V2= 0
LET t=0
PRINT "input delta t. Suggest 0.001 seconds"
INPUT D
PRINT "input M1 & M2 (kg)  Masses, spring and bob"
INPUT M1
INPUT M2
PRINT "input l (meters) & k (N/m); rod length and spring constant"
INPUT l
INPUT k
LET g = 9.8
print "input viscous dissipation constant"
input vdc
PRINT "number of steps [total time printed is number of steps times delta t] "
INPUT stop
PRINT "input mod number m, i.e. mod (steps, m).  Print interval (secs./print) is delta t times mod number (m)"
INPUT m
LET mu = M2/M1
LET S=k/M1 
print "Wos=sqr(k/m); T0s = 2Pi sqrt(M1/K)"
print "Ts = "
print 2*pi*sqr(1/S)                       ! natural spring frequency (radians / sec)^2
LET P=g/l   
print " W0p =sqr(g/L)"
print "Tp = "
print 2*Pi*sqr(l/g)



SUB calc
    LET Q1 = ( (L*mu*P*cos(X2)*sin(X2) + L*mu*V2*V2*sin(X2) - S*X1) / ( 1+mu-mu*cos(X2)*cos(X2) ) ) - v1 * vdc/m1

    LET Q2 = ( ( ( S*(X1/l)*cos(X2) )/(1+mu) ) - ( (mu*sin(X2)*cos(X2)*V2*V2) / (1+mu) ) - P*sin(X2) ) / ( 1- ( mu*cos(X2)*cos(X2) )/(1+mu) )

END SUB
SUB type
    IF mod (steps, m) = 0 then PRINT t, X1, X2
END SUB

CALL calc
LET V1 = V1 + Q1 * D / 2          ! increased accuracy when calculated in the middle of the interval.
LET V2 = V2 + Q2 * D / 2

FOR steps = 1 to stop
    IF steps = 1 then PRINT t,  X1, X2  
    CALL type
    LET X1 = X1 + V1 * D
    LET X2 = X2 + v2 * D
    LET T = T + D
    CALL calc

    LET V1 = V1 + Q1 * D
    LET V2 = V2 + Q2 * D

NEXT steps
END



Here’s the output of an earlier version without damping. 
Units are meter and radian. 

file://localhost/Users/bernardcleyet/Desktop/*BASIC%20stuff/pendula/oscilalting%20support/Output/graphs/frst%20set%20sent/strongly%20coupled.qpc


These compare free (no spring) and stiff supports.



Six months later I purchased two rotary motion sensors, accessories, a track 
for the carts I’d won at an NCNAAPT raffle, and additional carts.  That initial 

apparatus is pictured below.

Note the partially obscured outrigger friction pad.

☜

file://localhost/Users/bernardcleyet/Desktop/*Phys,%20Math,%20etc./


view showing angular to linear convertor



Speaking of the outrigger friction 
pad, the following are graphs of 

trials obtained with increasing pad 
friction.  Included are measures of 

the damping found by displacing the 
cart with the pendulum removed.



Trial #1 (least damping)



file://localhost/Users/bernardcleyet/Desktop/*Experiments/Coffee%20Table/Coupled%20pendullum%20&%20spring%20experimental/string/coupled%20/data/200N:/all%20cart/p%200.552m/For%20NCNAAPT%202010IV/Cart%20%231%20coulomb%20diss.%20Q.qpc


Note the problem above with the calculation of the Quality factor.  
Corrected below:



Trial #2 
Unfortunately, I didn’t hold the cart at its equilibrium position until I 

released the displaced the pendulum (for trial #2 only).



Approximately normalized’s free decay graphs showing the effect of increasing 
Coulomb friction









The New Apparatus



Angle to position conversion pulley
Note: reduction of moment of inertia



Finding the spring’s force constant. 

Photo’ of previous apparatus and a graph of the present apparatus’ force constant 
Note the apparent static friction.



The next five slides show the free decay 
of the pendulum with its support clamped 

to the track.  



Finding the Pendulum’s Frequency and Q from Its Free Decay



The multiple fits show the variation of both the frequency and the Q 
of the freely decaying pendulum.  These are graphed below.

The variation of the Q is due to the 
changing dominance of the dissipation type.  
First quadratic, then linear, and finally 
Coulomb.  

The Frequency variation is, of course, due to 
a pendulum’s “circular error”.

A superior method of showing the amount 
of each decay type is to directly measure the 
energy decay for each “beat”.  See:  Siegel, et 
alii,  Period-speed analysis of a pendulum

Am. J. Phys. 76 (10), October 2008 pp.956 ff..



There is apparently “good” agreement between the 
previous graph of frequencies  and the FFT ones below.



Here’s a graph showing the circular error fitted to a first order 
correction.  The discrepancy at low amplitude is likely due to the low 

resolution of the rotary motion sensor. 
(The amplitude is in radians and the period in seconds.)



This graph illustrates the poor resolution and 
that the decay is somewhat constant.



The following two slides show the cart’s 
free decay with its pendulum removed.





Q (from the linear fit) = 29. 
(without the cable, 39) Note the superior Coulomb fit.



Finally, some video clips of the 
oscillators “in action”.



Two Degrees of Freedom, therefore, 
Two Normal Modes 

The Symmetric and Antisymmetric 
video clips followed by their FFT 

analyses 



Note:  reduced pendulum 
decay with stopped cart.

Symmetric or in phase mode





Antisymmetric mode





The following two graphs show the 
cart initially held in its equilibrium 

position until the pendulum, 
displaced, is released, and the cart 

displaced.







And finally, a video clip of the 
system’s behavior with a free, no 

springs, cart followed by the graph.







Note the difference between reality and numerical modeling! 
The apparatus may even be showing chaos.



A number of modern undergraduate texts 
analyze coupled oscillators including A. P. 
French’s introductory text.  He asks as an 

exercise*: Solve for the characteristic (eigen) 
frequencies and amplitudes of the spring and 

pendulum coupled oscillator system with equal 
masses and the pendulum linearized.   I have 
solved the secular determinant for unequal 

masses to find the normal frequencies.   

*Vibrations and Waves, p. 156  problem 5-11



Here’s that problem.



And the solution:

 

By dividing by the masses appropriately, and letting k/M1 =ωs2, g/l =ωp2 , ω$
2 = Ω$, 

and µ = M 2 /M1, one obtains:   !!x1+  (Ωs + µΩp)x1− µΩpx2 = 0, and
                                                   !!x2 +Ωp(x2 − x1)= 0
Subbstituting the trial solutions x$ = B$eiωt, collecting, cancelling the common factors, 
and setting the determinant of the B$ coefficients to zero, one obtains:
Ω2 − (Ωs + (1+ µ)Ωp)Ω +ΩsΩp = 0
Substituting into the quadratic formula, and "undoing" the Ω substitutions, one obtains:

ω =
(ωs2 + (1+ µ)ωp2 )

2
±

(ωs2 + (1+ µ)ωp2 )2 − 4ωs2ωp2

4
Remember: The above is derived from a linearized pendulum.



The following two graphs are of the 
oscillators’ two normal modes with 

their constituent frequencies set 
nearly equally.  The previous ones 

differed by approximately six 
percent.







Both oscillators’ isolated (natural) frequencies are 
approximately 5.9 radian/s. 

The pendulum and cart masses are 0.15 and 1.92 kg. 

Mode Experimental Analytic

Symmetric 5.2 radian/s 5.1

Antisymmetric 7.2 radian/s 6.8
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