
Q in mechanical 
oscillators

A common definition is 

     times the total oscillator’s mean stored energy 
divided by the energy dissipated each cycle.

2π



Q is the figure of merit or quality of an oscillator.  inter 
alia, it is an inverse function of the energy necessary to 

maintain a given oscillatory amplitude.  

NOT ALWAYS!

To assume always is naive and likely a result of 
experimental inexperience with mechanical 
oscillators, or a lack of apprehension of the 

solutions of the describing differential 
equations.  The result is the assumtion 

increasing the energy stored (the numerator) is 
the same as decreasing the dissipation (the 

denominator) in the Q formulae.



 An idea that makes wrong predictions 
every time is absurd, and is not dangerous, 
because no one will pay any attention to it. 
The most dangerous ideas are the those that 
are often correct or nearly correct, but then 
betray one at some critical moment.
John Denker (paraphrased:  Introduction [Ch. 0 of Modern 
Thermodynamics])



One may easily show that this is not the case for a linearly 
damped pendulum oscillator experimentally by two driven 

pendula trials.  One, varying the bob mass, while keeping the 
dissipation approximately constant, and the other for comparison 

by varying the dissipation with constant mass.

Next is a photograph of a pendulum whose flag’s 
angle changes the dissipation, and the following 

two graphs, show the resulting equilibria 
amplitudes and the free decay to determine the 

Q, for three flag angles.  



Drive for a faux pendulum from a 
quartz clock 



For viscous (linear) dissipation,                          

Where      is the angular frequency and      is the exponential decay 
constant, i.e. B and E in the above fits to a linear dissipation model.

 Q ω1 / 2(k / m) or ω1m / 2k

γγ

γω1



Note:  The amplitude does increase with Q as expected.

Q =ω1 / 2γ



So, as intuitively expected, reduce the drag 
and the amplitude will increase, as long as 
the drive is sufficiently constant.  This is true 
enough for my pendula, but as the following 
oscilloscope pictures show, the drive changes 
slightly with amplitude.



Drive potentials:

  Small Amplitude, ~ 0.02R (left)    Large Amplitude,  > 0.1R (right)

(Note the unfortunate scale change.)



Now the alternate experiment,
varying the mass with approximately constant dissipation. 

The same pendulum as pictured earlier was used, but with the flag oriented at 
maximum drag.  This was to reduce all of the Qs to convenient values.  With, 
for example, the maximum mass (0.895kg pictured below) the Q, without the 

flag, is greater than one thousand.  The times to reach equilibrium and to 
freely decay would be very inconveniently long.



Furthermore, the flag’s large dissipation renders the varying drag of the various bob 
masses negligible.   As seen below, the pendulum was stopped after each attainment 

of equilibrium and free decay, and an additional mass added.  Note the amplitude 
decreased with increasing mass!



Below are the fits to determine the Qs for the various pendula.  Note the region for the 
fits surrounds the amplitude equilibrium values.  This was done because the Q values 
vary with amplitude, which  indicates the linear model is only approximate.  They are 

constant in a linear model, and, therefore, there is both turbulent and constant (friction 
and hysteresis) dissipation in addition to the model’s viscous (linear with speed) 

dissipation.  I had found this previously using a three dissipation model fit.



I’ve shown experimentally, contrary to many’s intuition, that the mass of a pendulum’s bob does not 
significantly affect it’s driven equilibrium amplitude.  However, I had verified in other trials that, 

characteristically, a driven pendulum responds both in resonance and transient behaviour to its Q, 
whether the Q value is either due to dissipation and or its bob mass.  

So why?  Mathematically it is easily seen by keeping ones eyes on the mass.  The simplest appropriate 
model is the differential equation for a harmonically driven linearized pendulum:

So both k and gamma (the driving torque) are divided by m.

Therefore, both the Q and the driving amplitude contain m in the denominator.

The particular solution of the above equation for the amplitude at resonance is approximately (very 
good for large Q):

	

 	

 	

 	

 	

 	

 Since    

The “m”s cancel!
Finally, and very important, the nature of the driving force is irrelevant to this 
argument, as long as it is independent of the mass.  I used an harmonic drive, 

because the solution is easily found and illustrated in many texts.

 mθ + k θ + (mg / l)θ = Γ cos(ωt)

 Q ω1 / 2(k / m) or ω1m / 2k

Q(Γ / mgl) or (ω1m / 2k) (Γ / mgl)



On the other hand, I found, as described widely, a massive pendulum requires a 
long time to reach equilibrium and has a narrow resonance.  Again from the 
solution:

And the particular solution is:

So, again, the transient dies slowly if either the bob is massive and or the 
dissipation weak.

Some of the above mathematical results are intuitive.  With increased bob mass 
the resulting inertia will increase equilibrium time, but adding mass will not reduce 

the energy to maintain a given amplitude.  It does increase the free decay time 
because the PE is increased proportionally.  

2Δω ≈ω1 /Q,  where, as before Q =ω1m / 2k, therefore, 2Δω ≈ 2k / m

θ = Be−(k /m )t /2 cos(ω1t + b)



Acknowledgements:
I wish to thank B. Mumford of Mumford  Micro 
Systems for insisting pendulum bob mass does 
not increase pendulum amplitude with constant 

drive.  Au  contraire, increased bob mass will 
increase dissipation due to support motion.  
Mr. Mumford kindly gave me the pendulum 
drive I used.  Also, I used a Vernier Rotary 

Motion Sensor, and data acquisition system 
(LabQuest and Logger Pro).  The pendulum rod 
and brass masses are Pasco’s, and I cast the lead 
masses.  And, finally, Nancy Seese for giving up 
our sitting room (pictured next slide), so I may 

“do” coffee table physics.



Pictured is a pendulum driven electro-
magnetically using a rectified sinusoidal EMF 

of varying frequency.


