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A Response to Alan Heldman’s New Experiment, etc. 
 

Mr. Heldman’s new apparatus is truly fascinating, one that I had hoped to make, but he “beat me to it”.  This was 
because I don’t have readily available machine tools, etc.  Instead I chose to numerically model the pendulum with a 
spring-loaded support.  This is relatively easy, as it’s a problem, or a similar one, offered in many intermediate 
physics texts1.  One introductory text, by using the small angle approximation avoids recourse to the Lagrangian 
derivation of the equations of motion2.  I initially used that text’s coupled equations, because they are relatively 
simple and readily numerically integrable.  (Each equation contains only one acceleration.)  The results, depending on 
the initial conditions and parameters (displacements; masses, spring constant, and rod length), were as expected 
intuitively, i.e. with weak coupling and equal natural frequencies the energy passes back and forth and with strong 
coupling, depending on the oscillators’ respective energies and inertia, one acted as a driver of the other.  However, 
what I wanted to find was Mr. Heldman’s “flip flop” behavior.  Because I did not, I assumed it was because he used 
large pendulum amplitudes (>> ~ 0.1 radian) for which those equations are rather invalid.  Writing the Lagrangian is 
relatively easy, but plugging and chugging is rather hirsute.  Fortunately, several authors have done this, so all I had to 
do was separate the accelerations by solving them for the second derivatives, substituting alternately, and then 
plugging them in to a leapfrog algorithm3.  I tested it by comparing a trial at small pendulum amplitude (0.01 radian) 
to French’s one with the same parameters.  I had to do the separation several times before I found all the errors -- I 
hope!  The following four figures display some data created by that program. 

 
Fig. 1      Fig. 2  

 
Fig. 1 The initial pendulum displacement is 0.5 radians (~ 29 deg.).  The free (natural) periods of the oscillators are 
about two seconds. [g = k = 10 N/m; L = 1m, M1 = 1 kg].  The coupling is due to the mass of the bob (0.01 kg)   

                                                
1 Thornton and Marian, Classical Dynamics (5th. Ed.) is the current upper division text at UCSC.  Problem 12-18;  
Wells, Lagrangian Dynamics (Schaum’s outline 1967)  Example 4.4 Pendulum with a sliding support.  (The previous 
two treat the support mass as free.); Cooper & Pelligrini, Modern Analytic mechanics (1999), Example 5.4.2 Sliding 
[spring loaded] Mass with Pendulum. 
2 Not necessary, but somewhat simpler than just using Newton’s second law and isolated body diagrams.  French, 
Vibrations and Waves (1971) Problem 5-11.  The solution is given on line:   
http://ocw.mit.edu/OcwWeb/Physics/8-03Fall-2004/VideoLectures/ 
3 described in detail by Eisberg and Lerner, PHYSICS, Foundations and Applications; and Feynman, et al.  The 
Feynman Lectures on Physics.   
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For Fig. 2 the parameters are the same as in Fig. 1, except the bob’s mass is greater (0.1 kg).  A longer time series 
reveals the behavior is indeed chaotic, as it must be.4   I created the next two graphs for curiosity’s sake. 

 
Fig. 3      Fig. 4 

 
The Fig. 4 graph suggests attempting to model one of Mr. Heldman’s early experiments.  He found the horizontal 
movement of the suspension about five microns from a 15.2 kg bob5 at an amplitude of 1.5 deg. (26.2 milliradians) 
This is equivalent to a spring constant of about 8 E+5 Newton/meter. (~ 4.6 k #/inch)  The mass of the double 
plywood is approximately 3.4 kg6 and the Synchronome (without the pendulum) about the same.  (The casting is 6.6 
pounds.7)  Assuming no damping8 the result was quite similar except a higher ringing frequency and a further reduced 
response. 
 
Returning to Mr. Heldman’s coupled oscillators:  I have been unable to duplicate his apparatus’ behaviour, even with, 
what I presume is an exact9 model without damping.  My only explanation is the springs are hard 10 instead of linear 
and he used a large amplitude.  He supplied no data except for one frequency and a mass range, and it is difficult to 
estimate the parameters of his apparatus.  However, the spring constant can be derived from the given frequency and 

                                                
4 Generally a non-linear coupled oscillator system may be driven into chaos and the pendulum is certainly one.  I 
know of no exceptions.   
5 Horizontal force is ~ mgA, 15.2*10*26E-3 ~ 4 N 
6 Three quarter plywood density is (areal) ~ 9.5 kg/m^2, from a sample I measured.  Then I reread Mr. Heldman’s 
article; the factor of two difference is indeed worrying. 
7 Personal communication, Mr. B. Mumford 
8 More than grossly wrong.  If the system is an oscillator, I “guesstimate” the Q is about one.  The support tines 
(posts) may “ring”, but supersonically, and are heavily damped by their huge base and close coupling to the plywood. 
9 A non-linear pendulum, and springs can be very linear (<< 1% deviation). 
10 A hard spring is one whose constant increases with stretching.  A common example is a gas filled bladder.  
Obviously, a coil spring when nearly uncoiled becomes much harder.  The reverse physics term, not surprisingly, is 
“soft”.  
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mass.  As a result I plan to obtain a track for my Pasco very low friction 11reaction cart and mount it with springs.  
Perhaps I’ll be able to report in the next newsletter. 
 
Mr. Heldman discusses the concept of resonance, which is indeed confusing.  If an oscillator doesn’t oscillate is it 
one?  Surely an oscillator that clearly does and then is over damped is an oscillator?  How about changing the 
parameters, so the Q of a system not thought of as an oscillator is increased?  For example, would not a much heavier 
back plate ring when struck with a hammer?  I doubt, as Mr. Emerson wrote, the driving frequency of the pendulum is 
near the natural frequency of the support system, if it has one.  (Vide the very approximate model above.)  Regarding 
resonance:  Only an oscillator may resonate.  The amplitude of the resonance (or maximum response to forcing) is a 
direct function of its Q, and this maximum occurs when the driving frequency is the same as the oscillators natural or 
ringing frequency, or as Mr. Heldman wrote, the build up is greatest.  This resonance frequency is very little different 
from the undamped frequency except at rather low Q’s.  From my physical intuition, my calculations, and the 
response models I discuss below, I suspect there was no build up, but instead an error in measurement.  This might 
have been verified except for screw failure.12   
 
Mr. Heldman was particularly “fascinated” with my 10% “rule”.  It was the result of an estimate from several text 
graphs. 13  From them14 one will find that to have a response of about three times greater than the forcing amplitude 
the Q must be approximately greater than three and then, with better calibrated eyes, no matter the Q, at 
approximately +/- 10% from the resonance peak the response never exceeds five times the forcing amplitude.  
Because I had become somewhat adept at numerically modeling the coupled oscillators, I tried modeling a spring 
oscillator with various Qs.  However, in the limited time available I was unable to “debug” the program sufficiently to 
achieve internal consistency.  However, they are still instructive, so some examples follow. 
 
Fig. 5:  (next page) The Q is supposed to be 30, easily verified from the graph.  From this free decay, I measured the 
oscillator’s natural frequency to insert it into the algorithm that created the next graph. (Fig. 6, next page) 
 
Again the Q is supposed to be 30.  The frequency is correct, as there is no transient behaviour, as is evident in the next 
graph. (Fig. 7, next page) The forcing amplitude is 0.1 meter. 
 
 
 A note about the algorithm:  It is similar to the coupled oscillator one.  To conserve space I have not included the two 
programs I wrote.  I invite those interested to request them.  For those not able to, I’ll run them with your supplied 
parameters.  Remember, The Squeaky Person Is More Likely To Get The Cleyet.  [<bernardcleyet@ redshift.com>  
(831) 771-2611]  
 
A note about all the graphs:  In order to save time I instructed the algorithm’s output to print the calculated results 
only every 100th iteration, or less often.  The data points are rather accurate, though they sometimes don’t appear so. 
 
 

                                                
11 They have replaced air tracks, because of their convenience, and the friction is almost as low.  A further advantage 
is they support much more weight than air carts.   
12 My experience recently with #10 stainless deck screws.  Must be predrilled when used in pressure treated lumber. 
13 Perhaps the apothegm, “He who finds Chi (square) by eye deserves what he gets.” is applicable here. 
14 Good examples are found in Baker and Blackburn “The Pendulum” (Unfortunately, one must convert the damping 
constant to Q if one has a better apprehension of Q.); A.P. French, Vibrations and Waves; Braddick, Vibrations, 
waves, and diffraction, and probably many of the more complete intro. Physics texts. 
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Fig. 5       Fig. 6 

 
Fig. 7 

 
Note particularly (Fig. 7)  the very weak response, and that the transient is damped only after approximately 50 
seconds.  All appropriate parameters, etc. are the same as in the Fig. 6 graph except the driving frequency. 
 
Again, obviously, I must duplicate, approximately, Mr. Heldman’s apparatus and compare with my numerical 
modeling and report back. 
 
bernardcleyet@redshift.com 


