
Discussion of Recent Articles on Pendulum Support 
 

 
Pendulum Support Loss has been a subject of experimentation and theory for some time1234567.  
Even so reexamining it in this forum is appropriate, as questions remain unanswered and some 
maybe unfamiliar with past results.  My interest stems from questions8 asked by a member over the 
past several years.  Finally answering the most recent one required my becoming a member.  I have 
had no previous horological interest except as observing the classroom construction of a quartz 
clock in 1958.  Reading the recent Newsletter articles impels me to contribute by correcting what I 
think are errors and adding my perspective as having been an experimental physicist and instructor.    
 
Most practical is to use reverse chronological order.  In the most recent article,9 the author suggests 
his pendulum’s wall support resonates when driven by the pendulum.  This is highly unlikely as the 
frequency of a periodic driving force must differ less than 10% from the frequency of the driven 
oscillator for the steady state amplitude to be, as found, about three times that of the driver.  Given 
the elastic moduli and masses of the casting and wall I think this is highly unlikely.  I may have an 
explanation for the author’s paradox, which I hope to discuss with my comments on his static 
measurement of wall movement.   
 
A minor point:  Rawlings evidently uses small angle approximations in his formulae for pendulum 
tension components.  This is unnecessary as the exact formulae are simple10.   
 
One method of elucidating the paradox would be to measure the movement dynamically using the 
force gauge pulling on it quasi-sinusoidally.  Timing could be done using the pendulum w/ a very 
light bob or a metronome.  Another possible method would be to mount the heavy bob much closer 
to the suspension.  At half a meter the period would be increased ~ 40%.  I would be very surprised 
if this significantly changed the effect since the tension in the rod is independent its period.  Still 
another method would be to video the movement of the LASER’s spot from the time of releasing 
the pendulum.  If it were a resonance phenomenon, then one would record an increase in amplitude 
w/ time.  Incidentally, the coupling between oscillators must of necessity oscillate, but not 
necessarily be an oscillator, i.e. if impulsed will not ring, and if an oscillator, it is merely an artifact 
                                                
1 .  Sir George Gabriel Stokes, "On the effect of the internal friction of fluids on the motion of pendulums", 
Trans. of the Cambridge Phil Soc. Vol. IX (1850). Reference: Peters, Model of Internal Friction Damping in 
Solids 
2 Sci. Am. July and August 1960 
3 The Science of C. & W. 3rd ed. pp. 40 & 100 
4 Accurate Clock Pendulums (Matthys) pp. 211 ff. 
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7 The preceding is only a small fraction of articles.  They also include additional referred articles. 
8 What effect will the moon have on the period of a pendulum?  What effect will changing a pendulum’s 
length have while oscillating?   What effect will immersing a pendulum’s bob in water have on its period?  
“Do you remember an experiment to measure the motion of a wall with a mirror and a laser beam? The goal 
is to measure the amount of wall movement as a pendulum swings. I can't remember where this is 
described.”  How does one know the amplitude based on its speed at the center of its oscillation?”   
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10 I will be pleased to e-mail my derivations of the formulae I mention to those requesting and also my 
methods of obtaining various values.  [bernardcleyet@redshift.com] 



necessarily having a different period than the oscillators (pendulua).  Examples of non-oscillatory 
couplings are mutual inductance of two coils, a string connecting spring or pendulum oscillators, a 
board on rollers (coupling metronomes11), and magnets on pendulua (torsion and plane).   
 
Separate cases will easily eliminate the double pendulum atmospheric coupling.   
 
When first apprised of the support problem by Mr. Mumford several months ago I suspected the 
impulsing was not constant and inquired as to the method of initiation.  He explained it was the 
position of the rod.  Even so, I thought the transfer of the gravity arm’s momentum to the rod would 
vary depending on its motion.  Less than a moment’s thought confirms that intuition.  The gravity 
arm must catch up to the pallet; otherwise, there is no contact!  Desiring to quantify this effect, and 
being rather mathematically challenged, I modeled the escapement, as if it were a particle colliding 
with another.  The resulting equation is, of course, only an estimate of the effect.  Notice that this 
effect is a negative feedback tending to keep the amplitude constant.  It, therefore, reinforces Mr. 
Heldman’s primary thesis.  Recently I found a very similar problem in a standard text12.  A wedge 
whose face is concave  (radius R) sits on a frictionless surface.  A mass (m) is placed on the surface 
and sliding down causes the wedge (mass M) to move horizontally in the opposite direction.  Find 
the equations of motion of the masses and the reaction (force) of the wedge on m.  The authors’ 
answer for the contact force is extremely complicated, and, therefore, I haven’t taken the time to 
compare with a clock.  I may if requested. 
 
I decided:  Beginning all trials with the same amplitude does not correct for a varying impulse.  The 
equilibrium amplitude is determined by the dissipation and the impulse energy.  The amplitude for 
which the dissipation equals the rate of energy delivered by the escapement is the equilibrium 
amplitude.  Power in must equal the power out.  However, the time to reach equilibrium will vary 
with the mass. 
 
I agree a rod under more tension is more rigid; therefore, the hysteretic or viscoelastic loss will be 
less.  However, there is another contrary effect 13.  A pendulum rod may be modeled as if a beam 
under three point loading with the ends poorly fixed.  Both ends become more rigid with increased 
bob mass.  The spring end because of the increased tension and the bob end by inertia, thereby, a 
greater portion of the impulse bends the rod initially instead of moving it.  Unfortunately, this effect 
adds to the other losses confusing the “issue”.  It may, however, be approximately quantified by 
replacing the rod with one considerably more rigid.  14 
 
The difference in impulse (“beat rate” 2 parts per thousand) between the extreme pendulum masses 
is much too large to ascribe to circular error.  The first order respective corrections15 are, for the 
tungsten and iron / aluminum pendulua, 1.0 E-4 and 6.9 E-5.  In addition, the corrections for the 

                                                
11 Pantaleone, Synchronization of metronomes, Am. J. Phys. 70, pp. 992 
12 Marian and Thornton, Classical Dynamics 5th ed. Problem 7-34.  It first appears in the third ed., but the 
answer given assumes the wedge is not free to move.  [Text used at UCSC] 
13 “It will be reasonable to suppose (though needing experimental support) 
that the flexure's loss is also proportional to the pendulum's weight. 
This is certainly what an engineer would assume, prima facie.”  I thank Brian Whatcott PHYS-L (list) 
14 Using a large diameter tube will satisfy the required mass constancy while increasing the rigidity 
15 ([sin (A/2)]^2) / 4  Given in any advanced mechanics text or mathematical methods for physicists, and 
Baker and Blackburn, The Pendulum. 



damping shift16 are too small:  order of magnitude 1 E-10!  Pendulum length is an obvious 
explanation. A two mm length change in a one-meter long simple pendulum will result in the 
measured change.  I will further discuss this in Mr. Emerson’s article.   
 
I think the author is correct in criticizing Mr. Emerson’s analyses with regard to the other sources of 
dissipation.  In addition suspension loss may increase as the radius of curvature of the spring is 
decreased with heavier bobs.  This is a subject requiring more study.  I suspect the effect, though, is 
negligible.   
 
A minor, but niggling point:  Mass has two attributes:  inertia, as described by Newton’s second, 
and the distortion of space we know as gravity.  I suggest the phrase should be inertial mass, or just 
plain “mass”. 
 
The author’s intuition is correct.  If the dissipation is independent of the mass, the amplitude is also 
independent.  I will argue this later.  Curiously, one would think this had been verified 
experimentally.  However, an hour’s searching the Am. J. of Physics and googling yielded only one 
reference, a retired teacher’s laboratory exercise.  Unfortunately, he had not saved any data.  I 
intend to construct a pendulum for this and other purposes and hope to submit an article. 
 
 Even if Mr. Emerson’s model 17 were true, the measured loss and it are so inconsistent that his 
using slightly different manufactured values are irrelevant.  I now discuss his response: 
 
Mr. Emerson usefully points out the Synchronome pendulum is a physical one requiring, when 
accuracy necessitates, the addition of the bob’s and rod’s momenta of inertia.  However, as I wrote 
above, this correction is irrelevant, as is using the first order correction term in the circular error.  It 
amounts in the extreme example to less that 0.005 %.  Its use is unnecessarily confusing.  Curiously, 
He used the small angle approximation to simplify 1-cos(A).  This error at five degrees is ~ 0.07%, 
which is greater than the circular error!  Much more important is his conclusion that, no matter the 
nature of the pendulum loss, “changing the density of the bob while the drive is kept constant, will 
change the amplitude at which the pendulum stabilizes.”  This is manifestly at odds with the energy 
principle, if the energy dissipation is independent of the bob’s mass.  Then the amplitude of the 
pendulum is independent of the mass.  As explained in Mr. Heldman’s first article, the energy 
stored in a pendulum is a positive function of the maximum amplitude.  Initially18 energy input is 
divided between the dissipation and the stored energy of the pendulum, whose amplitude is a 
measure of that energy.  The stored energy and the amplitude increases until the dissipation equals 
the energy supplied by the escapement.  Then the amplitude is at the steady state amplitude.  This 
requires, for constant energy input, that the dissipation increases with the amplitude.  Otherwise, the 
amplitude would increase without end.  Can this paradox be resolved?  On page 26, Mr. Emerson 
skipped the step of differentiating energy with respect to the amplitude.  If one instead writes it as a 
finite differential, its meaning is more clear:  delta E = (MgLA) delta A.  What this means is a 
positive change in energy results in a positive change in the amplitude, but increasingly less so with 

                                                
16 [k/2m]^2  T = 2Pi/ (g/l – k^2 / 4m^2)^0.5  for example Phillips “Differential Equations” and Baker and 
Blackburn, op. cit. 
17 HSN 2007-1 
18 the description of  a clock’s pendulum beginning at an amplitude less than its steady state amplitude.  For 
the other initial condition, the pendulum’s behavior is self-evident.   



increase in the mass, g, length of the pendulum, 19 and the amplitude.  Nothing yet that a mass 
increase increases the amplitude.  The author then finds the energy rate as a function of the 
amplitude rate by substitution using the chain rule.  i.e. E dot (dE/dt – the rate of change of energy) 
= (MgLA) A dot   Again, what this means is a positive rate of energy results in a positive rate of 
amplitude, but reduced by an increase in any of the factors, MgL and A.  Nothing wrong here, and 
is intuitive.  The next step, I think, is not valid.  That is to claim the equation defines the steady state 
amplitude.  It only describes the change in amplitude as a function of the energy and the constant 
factors.  The author then moves on to the solution of the differential equation for the model of the 
linearized, and linearly damped20 pendulum.  He apparently uses the torques method for his 
derivation.  i.e., from N2, the sum of the torques equals the moment of inertia times the angular 
acceleration.  However, he did not give the resistance (damping) in torque form.  Here is the correct 
equation:   
 
 I  * theta double dot + L*L*k theta dot 21+ mgL * theta.  
 
Where:  I is the moment of inertia; theta the angle measured customarily anticlockwise from the 
vertical; theta double dot [d (d theta/dt)/dt] is the angular acceleration; L, the length (to centre of 
mass); etc. and the usual definitions. 
 
 Rearranging:   
 
theta double dot + k (L^2) (theta dot)/ I + mgL theta/I  
 
The amplitude part of the solution is  
 
A = A (zero) * exp [-k*(l^2) t/(2 I)].  Not, exp [(-k/I) t].  
 
 Note: if the pendulum is further simplified by assuming all the mass is concentrated in a point bob, 
the moment of inertia, I, is m* L^2.  The equation then becomes the one familiar in all the 
introductory physics texts, i.e. the resistance term’s constant factor is k/m, the gravity term’s g/L, 
and the exponent in the amplitude solution’s term is k/2m.  This is, of course, all irrelevant, because 
not only is the substitution of the amplitude portion of the differential equation model into equation 
2 invalid for the reason I gave above, but also, the model itself is invalid.  It is too simple to even 
roughly predict, or describe the behavior of the usual very stable long period clock pendulum.  
Finally, the author’s doorknob comment.  If one assumes the extreme value for the change in pivot 
point with mass of one cm, the amplitude would change < two minutes, likely not detectable by Mr. 
Heldman’s method. 
 
To be continued. 
 
bc;  who again invites critique at bernardcleyet@redshift.com 
 

                                                
19 Assuming a simple pendulum, otherwise it is the distance between the center of mass and the pivot. 
20 The damping is proportional to the first power of the angular speed. 
21 One L converts the linear speed (e.g. x dot) to angular speed (theta dot).  The force then is k L theta dot.  
This is the tangential force. The additional L converts it to the torque. 


