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The appearance of the coronavirus (COVID-19) in late 2019 has dominated the news in the last

few months as it developed into a pandemic. In many mathematics and physics classrooms,

instructors are using the time series of the number of cases to show exponential growth of the

infection. In this manuscript, we propose a simple diffusion process as the mode of spreading

infections. This model is less sophisticated than other models in the literature, but it can capture the

exponential growth and it can explain it in terms of mobility (diffusion constant), population

density, and probability of transmission. Students can change the parameters and determine the

growth rate and predict the total number of cases as a function of time. Students are also given the

opportunity to add other factors that are not considered in the simple diffusion model. VC 2020

American Association of Physics Teachers.

https://doi.org/10.1119/10.0001464

I. INTRODUCTION

The end of 2019 and beginning of 2020 have been domi-
nated by the spread of the coronavirus (COVID-19). The dis-
ease started in the Hubei province in China in December
2019 and by early January 2020 started to spread. It grew
very rapidly, triggering responses from the Chinese and other
governments. On March 11, 2020, the World Health organi-
zation declared that COVID-19 was then characterized as a
pandemic.1 The situation triggered different responses from
different governments. In the United States, many colleges
took the initiative to start their own social distance programs,
including sending all students home, extending spring
breaks, and ultimately moving all classes to distance learn-
ing.2,3 Many cities and states followed up with shelter at
home mandates.4 The situation in many countries became
alarming due to the exponential growth of new cases and
deaths.5,6

One of the consequences of this pandemic is that instruc-
tors at colleges and universities started to monitor and model
the data, using this as a teachable moment for students and
colleagues. The first step in modeling the data is to plot the
number of cases as a function of time and show that it exhib-
its an exponential growth. For beginners, it is important to
introduce them to the logarithmic scale, where the plot
becomes a straight line and students can extract the exponent
and realize that the fit to the US data on March 20, 2020
shows that the number of cases doubled every 2.4 days. Fits
to the initial data for Chicago and New York City show that
New York has a higher growth rate than Chicago (Fig. 1),
and the total number of cases in Chicago is substantially
smaller. One can speculate that this might be due to differ-
ence in population densities in these cities. After the first
20 days and after mitigation and social distance measures
were imposed, it is clear that the rate of infection slowed
down.

In this work, we propose to look at some of the factors
affecting the spread of viruses using a simple diffusion
model in which each individual in a population is treated as
a Brownian9 particle with diffusion constant D. Also added
to this model is the incubation period of the virus and a prob-
ability of transmission of the virus if individuals are closer
than a certain distance. This model is to be used as a project
in a computational physics course and verify if it adequately

predicts the exponential growth of the number of cases, as
well as if the population density, mobility, and probability of
transmission play roles in the percentage of the population
that will be infected as a function of time. Students will be
asked to modify a code, analyze the output for different sets
of parameters, and write a critical analysis of its predictive
effectiveness.

II. COMPUTATIONAL PROJECT DETAILS

In this section, we propose a project to be implemented in
computational physics courses to study the spread of infec-
tious diseases as a simple diffusion of individuals. The bene-
fits of this project are that its implementation is simple, but it
can lead to a qualitative understanding of how diseases are
spread, and it can also allow the student to understand factors
that can affect it. The main ingredients of the model are:
Individuals are considered particles that obey a Brownian
diffusion process; each individual will have three possible
states, healthy, sick (contagious), and cured; a healthy indi-
vidual has a probability of getting infected if its distance to a
sick individual is smaller than a certain threshold; the incu-
bation and sickness periods are the same; once an individual
gets cured, it cannot be infected or contagious again.
VPython (or GlowScript)10 is the language of choice as it
allows for a real time visualization of the infection spread
and it will allow for fast simulations of small populations on
a laptop. In the assignment, students will implement the
code, analyze the data generated, critique the initial assump-
tions, and propose improvements for more realistic simula-
tions. Below we describe the algorithm starting with the
standard diffusion equation.

The diffusion equation in 2D
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is used to study many phenomena11–20 from diffusion inside
the nucleus to population dynamics to solving the
Shr€odinger equation. The function f will have different
meanings depending on the application, from temperature to
density. In this work, we will use it for the diffusion of indi-
viduals, treated as particles, over closed boundaries subject
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to contamination of a viral infection. The normalized solu-
tion to Eq. (1) for a single particle is given by

f ðx; y; tÞ ¼ f0

1ffiffiffiffiffiffiffiffiffiffi
4pDt
p e�ðx

2þy2=4DtÞ: (2)

Therefore, one can simulate the diffusion of a particle from
its previous position by generating a Gaussian distribution of
zero mean and variance

ffiffiffiffiffiffiffiffi
2Dt
p

. For a system of N non-
interacting particles with the same diffusion constant, we use
Eq. (2) for each particle at each simulation time step.

The next ingredients in the simulation will be the popula-
tion density q, the number of habitants (particles in the simu-
lation cell) Npop, the diffusion constant D, the number of
simulation steps Nstep, the time step dt, the incubation period
tinc, the transmission radius rtransm, and the probability of
transmission from an infected to a healthy individual, prob.
All of these variables are set at the beginning of the simula-
tion. We preset the total simulation time to be 90 days and
that each time step is 0.01 days, therefore each simulation
takes 9000 steps. The algorithm is described below:

(1) Input q, Npop; Nstep, D, dt, tinc, prob, rtransm.
(2) Calculate the size of the square cell as L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npop=q

p
.

(3) Initialize the population.
(4) Choose a fraction of the initial population to be infected,

and set the timer for the sickness, tsick.
(5) Loop over Nstep.
(6) Move all individuals according to the Gaussian distribu-

tion, Eq. (2).
(7) Compute the distance between each healthy and infected

individuals. If the distance is less than rtransm, the healthy
individual becomes sick with probability prob.

(8) Subtract the sickness timer by dt.
(9) If tsick < 0 the sick individual gets cured.

In order to generate more accurate statistics, we suggest
the students run simulations with the same initial parameters
multiple times, between 20 and 100, depending on the size
of the system and the speed of the student’s computer. We
suggest that the smallest population contains 100 individuals,
as even one sick individual corresponds to an initial infected
population of 1%. Depending on how much time the students
have to complete the analysis of the project, they can use a
population of 1000, being aware that each individual 9000
steps simulation can take up to 30 min. They can speed up

the process by using larger time steps, however, they must
test if the results of an individual simulation with the same
diffusion constant and different time steps lead to similar
outcomes.

III. AN EXAMPLE OF A PROJECT

In this section, we provide an example of a project that
students could pursue and also validate the method by com-
paring the results of the simulation with the data presented in
Fig. 1. In this project, students will study the differences of
the infection proliferation in New York City (NYC) and in
Chicago. New York City was chosen because it is experienc-
ing a very rapid growth in the number of cases and preven-
tive measures such as shelter-at-home were taken by the city
and state governments at very early stages of the infection.
Chicago was chosen as a local connection to Northeastern
Illinois University (NEIU) students, and is also experiencing
an exponential growth in the number of cases and has also
been affected by shelter-at-home mandates. We must be
mindful that the current model will not be able to study the
effects of the measures that the government is taking, but it
might be able to justify their need.

The population density of New York city is 10,194 peo-
ple/km2,21 while Chicago’s is 4,665 people/km2.22 It is natu-
ral to offer the students the hypothesis that if all other
variables are the same, the spread of infections in New York
City will be faster than in Chicago and that the number of
cases will be much larger for the same period of time after
the first case. With this hypothesis alone, students should be
able to generate enough data for the project. They can also
discuss if the mobility (i.e., the diffusion constant) should be
the same in both cases and study the effect of mobility in the
spread of the disease. In the proposed model, the period of
incubation is the same as the period of sickness, but students
can be offered the option to modify this assumption. The
model also assumes that once cured, an individual will attain
immunity, and will not be able to spread the disease. They
can discuss modifications to the model to incorporate
relapse. It is clear that with this very simple model and this
very limited two-city project, they can perform a very thor-
ough study that can give us some qualitative understanding
of infectious disease spread.

In order to validate our model, we will try to recreate the
same initial exponential growth as experience by Chicago
and New York City. The exponential fit to the data in Fig. 1
yields exponents of 0.352 and 0.455 for CHI and NYC,
respectively. Although we envision that we can see such
growth in a 100 individual population, this growth is unat-
tainable for the same time frame as the real data, as 100% of
the population would be infected in days 13 and 11 if we
start with one individual infected in day 0. Deviations from
the exponential behavior will be seen even earlier as there is
not enough susceptible population available to be infected.
In order to get similar exponential growth, we start with sim-
ulations of populations of 100 individuals and 1 sick individ-
ual chosen at random. The initial diffusion constant was
chosen as D¼ 100 m2/day with a time step of dt¼ 0.01 day.
Therefore, the variance of the Gaussian distribution is 2 m2.
In this case, the number of simulation steps is 9000 for each
individual simulation, corresponding to 27 s on a laptop with
an Intel(R) Core(TM) i5–8250U CPU @ 1.60 GHz.
Therefore, 50 simulations will take about 22.5 min of com-
putation. We assume that the transmission radius is 2 m, and

Fig. 1. COVID-19 cases in Chicago (CHI, dark gray) (Ref. 7) and New

York City (Ref. 8) (NYC, light gray). The dashed lines are the best fit to the

data after the initial spike in cases. The x-axis is the number of days from

the date that the first case in each city was detected.
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that the probability of contamination is 20% per time step.
The incubation period is taken as 14 days. Below are some
of the results of these simulations.

In Fig. 2(a), we present the results of the simulation for
New York City with the set of parameters in the previous
paragraph. As one can see, under this assumption 50% of the
population is sick on day 11 and 99% of the population will
be infected after 28 days. One can see that after day 18 the
number of sick people starts to decline. However, if the death
rate is similar to what has been observed for the COVID-19
pandemic, about 5.5% of the population of NYC would per-
ish, and the numbers would be even worse, since no major
city in the world would be able to have hospital beds for
83.8% of its population at the peak of the infection. In the
figure, we also observe that the rate of cure follows the num-
ber of infected individuals with a lag time of 14 days, which
is the incubation/sickness period. An exponential fit, shown
in Fig. 2(b), yields an exponent of 0.41 which is a bit lower
than what was observed in the real data. Students will need
to search for the set of parameters that is able to fully match
the initial growth rate data that they choose to model.

In Fig. 3(a), we report the results for the city of Chicago.
Most of the parameters are the same, with the exception of
the density that will be changed to q ¼ 0:0047 people/m2.
For this set of parameters, 50% of the population will be
infected after 26 days reaching a maximum of 87.8% after
day 86. The peak of the number of sick people is 42.3%, and
it happens about 32 days after the first 1% of the population
is infected. In Fig. 3(b), we present a logarithmic scale plot
of the total number of infections together with an exponential
fit for the initial stages of the infection. Similar to what

happened in the simulation for NYC, it is clear that the num-
ber of infections deviates from the exponential growth after
13 days. The exponent in the fit is 0.2 which is also smaller
than the value for the data for Chicago. A closer fit is likely
to take place by increasing the probability of infection.

These two examples do support our initial hypothesis that
under the same conditions, one would expect a slower
growth rate in a less dense population. This leads to the con-
clusion that keeping all parameters the same, the percentage
of the population infected is correlated with the population
density. In order to determine how mobility affects the rate
of infection, one would change the diffusion constant and
repeat the simulations. The expectation is that the lower the
mobility, the lower the total infection rate. In addition, even
with the limitations of a small population simulation we
were able to find growth rates of infection that are similar to
what was observed for the cities of Chicago and New York,
thus validating this approach to simulate the spread of infec-
tious diseases.

In order to show the limitations of small population simu-
lations, we run a simulation for the city of Chicago with a
probability of infection of 30% per time step but increased
the number of individuals to 10 000. The results are shown in
Fig. 4(a). With this set of parameters, we obtain the same
exponential growth as observed in Fig. 1 for a period of
15 days. Starting with 0.01% of the population infected, we
see that at the end of 90 days about 40% of the population
will have been infected. One can also see that even a small
diffusion constant of 100 m2/day and a probability of trans-
mission of 30%, the virus will spread to a large percentage
of the population. It is clear that a diffusion model does a

Fig. 2. (a) Average of 50 90-day simulations of the spread of a virus in a population of 100 individuals in a square cell with the population density of NYC

(q ¼ 0:012 people/m2). D ¼ 100 m2/day, prob¼ 0.2, dt¼ 0.01 day. (b) Graph of the number of infected individuals (solid line) in a logarithmic scale and the

exponential fit for the initial 10 days of the simulation (dashed line).

Fig. 3. Average of 50 90-day simulations of the spread of a virus in a population of 100 individuals in a square cell with the population density of the city of

Chicago (q ¼ 0:0047 people/m2). D ¼ 100 m2/day, prob¼ 0.2, dt¼ 0.01 day. (b) Graph of the number of infected individuals (solid line) in a logarithmic scale

and the exponential fit for the initial 10 days of the simulation (dashed line).
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very good job of simulating the spread of the COVID-19
virus and could be used in a classroom setting, and with the
modifications suggested below one can even use it for more
realistic predictions when simulating larger populations. The
main limitation will be access to better computational resour-
ces such as a parallelized code and a computer cluster.

To conclude, we show snapshots of the simulation cell
and its population in Fig. 5. White spheres represent the sus-
ceptible people, dark gray represent sick, and light gray are
those individuals who recovered. This window is very useful
for a quick analysis of what is happening and can show how

the infection spreads over time. We found it useful to change
the radius of the individuals so that they are visible as the
population increases, and the cell size on the screen remains
the same. Because we are displaying the results for 10 000
individuals it is interesting to see that the infection has a
clear origin and the diffusion process spreads the disease out-
wards. In these simulations, we chose closed boundaries and
as a result there will be a limitation on the growth as there
will be less susceptible neighbors to be infected when the
disease reaches a boundary. To avoid this limitation, one can
use periodic boundary conditions.

Fig. 4. One 90-day simulations of the spread of a virus in a population of 10 000 individuals in a square cell with the population density of the city of Chicago

(q ¼ 0:0047 people/m2). D ¼ 100 m2/day, prob¼ 0.3, dt¼ 0.01 day. (b) Graph of the number of infected individuals (solid line) in a logarithmic scale and the

exponential fit for the initial 15 days of the simulation (dashed line).

Fig. 5. Snapshots of one of the 90-day simulations of the spread of a virus in a population of 10 000 individuals in a square cell with the population density of

CHI (q ¼ 0:0047 people/m2). D¼ 100 m2/day, prob¼ 0.3, dt¼ 0.01 day. White spheres represent the susceptible people, dark gray represent sick, and light

gray are those individuals who recovered.
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The main limitation of this model is that it assumes the same
mobility for all individuals and a constant density in the simula-
tion cell, and no travel between cities. In addition, the average
distance traveled by Brownian particles is proportional to the
square of the simulation time. Thus, there is a limit on how far
they will travel and how many people an individual can infect.
However, depending on the level of the students, instructors can
use the same code and create sub-regions in the simulation cell
that would have different population densities and subsets of the
populations can be confined to these regions. The students could
allow individuals to go from one region to another with a given
probability. This would allow the possibility of an infected indi-
vidual to move to a region that otherwise would have no infec-
tions. This modification would allow for the spread of the
infection across borders. One could also include quarantine
effects, by creating small cells where a single infected individual
will be confined for a period of time and no other individuals are
allowed in. Social distancing can be implemented by a small
repulsive potential attributed to some individuals. These modifi-
cations will bring this simple model closer to more realistic simu-
lations as those of Refs. 23 and 24. To help with the
implementation of these projects, the original code can be down-
loaded from the author’s website.25

IV. CONCLUSION

This project is simple enough that it can be implemented
and analyzed in a first course on computational physics.
However, it is also rich enough that it can lead to a large
amount of data that can be used to qualitatively and quantita-
tively analyze the spread of viral infection. In addition, it can
help students understand the phenomenon of particle diffu-
sion and Brownian motion. In the example presented, the
simulation was limited to the same probability of infection,
the same time step, the size of the population was fixed, and
the length of the disease was the same as the incubation
period. But students are also able to change these parameters
to see if they can reproduce data readily available in the
news. In addition, they will have the opportunity to determine
if the initial growth rate in the number of cases follows an
exponential trend, and if once the growth rate reaches a cer-
tain threshold it will follow the expected logistic behavior.

In conclusion, we hope to have convinced the reader that a
simple diffusion model can be used to qualitatively explain
the spread of disease and even in some cases quantify it. It is
our judgment that it will allow students to work on a problem
that is directly affecting them, and that these simulations will
help them offer valuable insight on the issue.
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