
NOTES AND DISCUSSIONS

The diffraction and spreading of a wavepacket
Guy Vandegrifta)

Department of Physics, Purdue University North Central, Westville, Indiana 46391
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The spreading of a one-dimensional wavepacket solution of Schro¨dinger’s equation is related to the
diffraction of light, as can be verified by considering the three-dimensional spreading of a
wavepacket for an arbitrary dispersion relation. This investigation uncovers a special property of
Schrödinger’s equation for a free particle: A wavepacket with initial spherical symmetry will
preserve this symmetry in all Galilean reference frames. This property leads to a derivation of de
Broglie’s postulate that wave number is proportional to momentum~or velocity!. The application to
non-Gaussian wavepackets and to Fraunhoffer diffraction also is discussed. ©2004 American

Association of Physics Teachers.
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I. INTRODUCTION

Many students encounter Heisenberg’s uncertainty p
ciple in the context of the Fraunhoffer diffraction of light b
a single slit taking de Broglie’s hypothesis,p5\k
52p\/l, as a starting point.1 Passage through the slit yield
information about the particle’s position in the direction pe
pendicular to motion. The subsequent diffraction of the wa
implies uncertainty in that component of the momentum.
though this derivation assumes that both light and part
waves diffract in essentially the same fashion, stude
should also know that pulses of light do not spread in
direction parallel to motion. This paper explores how ar
trary linear waves spread and diffract. I will show that bo
properties are governed by a symmetric tensor]2v/]kikj ,
which is obtained directly from the dispersion relationv
5v(k)5v(kx ,ky ,kz).

We follow the familiar Gaussian wavepacket solution
Schrödinger’s equation,1 and introduce a coherence time,t.
Let a5^(x2^x&)2&1/2 represent the initial standard deviatio
Dx of the wavepacket, and assume thatDxDk takes on its
minimum possible value at timet50. As time evolves, the
uncertainty~standard deviation! will grow as,1,2

Dx5aF11S t

t D 2G1/2

. ~1!

Under certain circumstances, Eq.~1! can be generalized fo
an arbitrary dispersion relation, and for higher dimension

t5
a/Dk

i]2v/]k2i 5
a/Dk

i]v/]ki , ~2!

wherev5]v/]k is the group velocity, andDk is the stan-
dard deviation of the wave number. If the wavepacket ha
Gaussian profile, thena/Dk52a2. If the dispersion relation
is \v5\2k2/2m1V, we obtain the well-known result,t
52ma2/\. It can be understood as follows: The spread
group velocity is estimated byDv5(]v/]k)Dk. For typical
or ideal circumstances, a wavepacket of original size,a, will
retain this size for a time,t, wheretDv'a. Equation~2!
follows directly, though only as an order of magnitude es
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mate. Sections II and III derive Eqs.~1! and ~2! for non-
Gaussian wavepackets in three dimensions.

In the following we assume the wavepacket to be of
form,

c~r ,t50!5E d3k h~k!exp@ ik0•r1 if0#, ~3!

where h5h(k) is a real valued function, andk0

5^cukopuc& is the expectation value of the wave numb
This expectation value may be found either inr space,
*d3r c* (2 i“)c, or in k space,*d3k w* kw, wherew is the
Fourier transform ofc. The generalization to higher dimen
sions is achieved by replacing]2v/]k2 in Eq. ~2! by the
eigenvalues of the 333 tensor, D5]2v/]k]k
5]2v/]ki]kj . @See the discussion after Eq.~15! below.#
What might not seem intuitive is thatD has nonzero ele-
ments even when the dispersion relation has the nondis
sive form,v5Ck, whereC is a constant~which need not be
the speed of light!.

The three-dimensional spreading of a wavepacket unv
a nonrelativistic symmetry argument that motivates Schr¨d-
inger’s dispersion relation for a free particle. Although t
rigorous discussion of Sec. II requires tensor calculus,
symmetry argument can be intuitively understood as follow
Suppose that we begin with the understanding that parti
are the limiting form of wavepackets, but without a know
edge of the dispersion relation or wave equation. De B
glie’s relations (E5\v and p5\k) have yet to be estab
lished. Nor do we know that the classical Hamiltonian for
free particle isH(p,q)5p2/(2m). We seek a nonrelativistic
dispersion relation. Consider first the familiar dispersion
lation, v(k)5Ck. Because the group velocity,v5]v/]k
5C, never vanishes, this form is obviously unsuitable a
model for Newtonian particles. The dispersion relatio
v(k)5Ck, is also unsuitable due to the asymmetric man
in which wavepackets spread. Recall that in vacuo light
the peculiar property of diffracting in directions perpendic
lar to its motion, while exhibiting no spreading~dispersion!
in the direction parallel to its motion. If the wavepacket is
represent a particle, an initially spherically symmetric Gau
404p © 2004 American Association of Physics Teachers
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ian wavepacket must remain spherically symmetric for a
~nonrelativistic! velocity. The absence of such a symme
would suggest the existence of a preferred reference fra

We therefore seek a dispersion relation for which
spreading is equal in all directions, and temporarily rest
ourselves to those of the form,v5Ckn. The diffraction of a
beam of light arises from the fact it is a superposition
waves traveling in different directions. The spreading o
one-dimensional wavepacket arises from the various com
nents of a wavepacket travelling at different speeds. Eq
tion ~2! implies that largen is associated with more sprea
ing along the direction of propagation. Therefore it
plausible that for some uniquen, the dispersion relation,v
5Ckn, might possess the required balance of dispersion
diffraction necessary to maintain spherical symmetry.
though this plausiblility argument fails to suggest a spec
value forn, we show in Sec. II how Schro¨dinger’s dispersion
relation is uniquely suited for this purpose.

This symmetry argument seems to be unique among p
sibility arguments leading to de Broglie’s postulates. De B
glie’s arguments are based largely on special relativity
topic not yet fully grasped by students as they begin to le
about wave-particle duality.3,4 An entirely different class of
plausibility arguments~Refs. 5 and 7! link the classical
Hamiltonian to the dispersion relation via substitutions su
as p→\k→2 i ]/]x. Although this argument leads directl
to de Broglie’s relations, it requires a presumption that
classical free-particle Hamiltonian isH(p,q)5p2/2m. Few
people would object to this assumption, of course. Never
less it is fascinating to see the classical free-particle Ham
tonian derived solely from the fact that it represents the l
iting case of a wavepacket.

Although most textbooks introduce the coherence time
Schrödinger’s equation ast52ma2/\,1,2 one advantage o
the more general form of Eq.~2! is that numerical evaluation
in terms of fundamental parameters is not always requi
especially if one considers the coherence length, define
vt5(]v/]k)t. For any dispersion relation of Schro¨dinger’s
form, v5A1Bk2, the coherence length for a Gaussi
wavepacket is,vt52a2k54pNa, whereN is the number
of wavelengths contained within the wavepacket’s initial s
~standard deviation!. If this concept can be applied~at least
qualitatively! to an atom, the difficulty with using wavepack
ets to model low order atomic states is easily recogniz
The wavepacket would lose coherence and cease to
wavepacket as it makes approximately one orbit.

Strictly speaking, Eqs.~1! and ~2! do not describe the
spreading of an electron wavepacket near an atomic nuc
because the spatial variation in the potential energy,V(r ),
violates the assumption of spatial homogeneity.2 By Ehren-
fest’s theorem, wavepackets of Schro¨dinger’s equation obey

Hamiltonian equations of motion,ṙ5]v/]k, k̇52]v/]r ,
v̇5]v/]t.1 Here the wavepacket’s coordinates
(v,k,r ,t)-space represent expectation values, andv
5v(k,r ,t) is a classical Hamiltonian.5 These same canon
cal equations of wavepacket motion also describe other s
ations in the eikonal limit5 that include solid-state physics6

plasma waves,7 and general relativity.8 The consideration of
the spreading of a wavepacket when the dispersion rela
exhibits such spatial inhomogeniety is beyond the scope
this paper.2
405 Am. J. Phys., Vol. 72, No. 3, March 2004
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II. SPREADING AND DIFFRACTION IN THREE
DIMENSIONS

We Taylor expand an arbitrary dispersion relation, assu
ing that the wavepacket is localized ink space, centered a
some wave numberk0 , and frequencyv05v(k0):

v~k!5v01v•~k2k0!1
1

2
~k2k0!•

]2v

]k]k
•~k2k0!1¯

[v01v"k1 1
2 k"D"k1¯ , ~4!

where k5(k2k0). The symmetric 333 tensorD may be
expressed in a number of forms:

D i j 5
]2v

]ki]kj
5

]2v

]k]k
5]v/]k. ~5!

The symmetry of this matrix (D i j 5D j i ) permits the use of
the compact but sometimes vague dyadic notation~for ex-
ample,]v/]k[]v i /]kj ). For example, the symmetry ofD i j

implies that (]/]k)(k"D"k)5(]/]k i)(k jD jkkk)52D i j k j

52k"D52D"k ~written by hand as 2D= •kI ). We sum over
repeated indices unless otherwise stated. The use of
superscripts and subscripts is optional, but facilitates a tr
sition to nonorthogonal coordinate systems.

The symmetry ofD i j also permits the coordinate syste
to be rotated so that the matrix is diagonal. Henceforth
shall assume that this rotation has taken place, and
(D 1,D 2,D 3) represent the eigenvalues of]v2/]k]k in the
(x,y,z) directions, respectively. Further simplification occu
when the dispersion relation is such that the angular
quency depends on the magnitude of the wave number
not its direction,v5v(uku)5v(k). The chain rule,]v/]k
5(]v/]k)(]k/]k), implies

v i5
]v

]k

]

]ki
~k1

21k2
21k3

2!1/25
]v

]k

ki

k
, ~6!

D i j 5
]v i

]kj
5

]

]ki
~k21kjv !5S d i j 2

kikj

k2 D v
k

1
kikj

k2

]v
]k

,

~7!

whered i j is the Kronecker~identity! matrix. If the medium
supporting the wave is isotropic, we lose no generality
assuming thatk and hencev both point in thex direction.
Hence,ki50, unlessi 51. All terms in Eq.~7! proportional
to kikj vanish, except thexx term corresponding toi 5 j
51. However, nonzeroyy andzz terms arise from (v/k)d i j

in Eq. ~7!. Thus]2v/]k]k is given by

D i j 5F ]v/]k 0 0

0 v/k 0

0 0 v/k
G . ~8!

The three diagonal elements are the eigenvaluesD j .
A wavepacket is formed by multiplying the plane wav

exp@ik"r2 iv(k)t#, by a wave number amplitude facto
f~k!, and then integrating over wave number. The integ
tion is greatly facilitated by the change of variables,k5k
2k0 , j5r2vt, andh(k)5f(k). This change of variables
also facilitates the analysis of a one-dimensional Gaus
wavepacket of Schro¨dinger’s equation often encountered
introductory textbooks,1 because it converts the problem of
moving wavepacket into that of a stationary one:
405Notes and Discussions
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c~r ,t !5
eik0•r2 iv0t

~2p!3/2 E d3k h~k!expF ik jj
j2 i

D jk j
2

2
tG .

~9!

If the amplitudeh~k! represents a Gaussian wavepack
h}exp@2(a"k)2#, then the components,aj , represent stan
dard deviations~in j space! along each of the three principl
axes defined by the eigenvalues ofD. As one might guess
an initially spherically symmetrical wavepacket (a15a2

5a3) will spread in a spherically symmetrical fashion on
if all three eigenvalues are equal (D 15D 25D 3). This
is easily verified because the three-dimensional integra
in Eq. ~9! for a spherically symmetrical Gaussian wav
packet separates into a product of three integrals, e
equivalent to the familiar one-dimensional Gaussian wa
packet. An initially spherical Gaussian wavepacket will r
tain its spherical symmetry only ifv/k5]v/]k in Eq. ~8!.
Becausev5]v/]k, this condition can be integrated to sho
that the dispersion relation must be of the form,v5A
1Bk2. This completes the argument that Schrodinge
equation for free particles~and hence de Broglie’s relations!
can be deduced from non-relativistic symmetry consid
ations.

III. NON-GAUSSIAN WAVEPACKETS

We now show how Eqs.~1! and~2! can be generalized to
include a certain class of non-Gaussian wavepackets.
class is defined by the constraint thath in Eqs.~3! and ~12!
be real-valued. It is of course no consequence if this re
valuedh is multiplied by a complex constant. For wavepac
ets of light or Schro¨dinger’s equation, this implies that a
time t50, the wavepacket’s phase is constant throughout
plane oriented so that its normal is parallel to the wavepa
et’s motion.

Consider the integral Fourier transform pair inspired
Eq. ~9!:

C~j,t !5~2p!23/2E d3k F~k,t !exp@ i k"j#, ~10!

F~k,t !5~2p!23/2E d3j C~j,t !exp@2 i k"j#, ~11!

F~k,t !5h~k!expF2 i
D jk j

2

2
tG[h~k!eiS(k,t), ~12!

where we have identified the phase associated with wa
packet dispersion asS5S(k,t)52(t/2)(k"D"k).

Following quantum mechanics, we treatk and j as ob-
servables representing position and momentum, respecti
Here the expectation values are most conveniently take
momentum space, where the components ofk act as a num-
bers, whilej→2 i ]/]k becomes an operator.1 As the wave-
packet has been tranformed to the origin in bothk and r
space, the expectation values vanish:^k&505^j&. We seek
the expectation value of the standard deviation tensor,^j j&
52^]/]k ]/]k&. The diagonal components represent the s
~variance! of the wavepacket, while the off-diagonal el
ments are correlation coefficients.

The careful reader will observe that the condition th
h~k! must be real-valued in Eq.~12! is imposed as an extr
constraint. Some justification for this constraint can be
derstood by considering three simple modifications wher
406 Am. J. Phys., Vol. 72, No. 3, March 2004
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h~k! is not real:~i! Multiplication of h by a complex number
has no consequence.~ii ! Multiplication of h by exp@ik"r0# is
not permitted because it shifts the wavepacket away fr
the origin. ~iii ! In one dimension, multiplication by
exp@ik"M"k# shifts the time when a Gaussian wavepac
converges to a minimum value of uncertainty,DxDk51/2.
But in three dimensions, this simple interpretation holds o
if strong restrictions are placed onM. In the special case
that,M51

2D t0 , the time when the wavepacket takes on
minimum size is shifted fromt50 to t5t0 .2 ~Before that
time, the wavepacket had been converging.! If M is diago-
nal, but not proportional toD, then the wavepacket takes o
minimum size at three different times for the three princip
directions. In this case, the Gaussian wavepacket is n
realized. We therefore see that non-real values ofh~k! in Eq.
~12! can greatly complicate the meaning of the wavepac
as a state of maximum compactness~minimum DxDk). To
avoid such complications, we henceforth takeh~k! to be
real.

To evaluate the expectation values,^j j&, we let the tensor
operator (]/]k ]/]k) act onC in Eq. ~12!:

]2~heiS!

]k]k
5

]

]k S ]h

]k
eiS1 ih

]S

]k
eiSD

5
]2h

]k]k
2

]S

]k

]S

]k
h1 i H 2

]S

]k

]h

]k
1

]2S

]k]k
hJ . ~13!

If we multiply by h* and integrate overk space, the term in
curly brackets$¯% vanishes ifh is real. This is most quickly
verified from the requirement that the Hermitian operatorj
j must have real expectation values, but also can be pro
using integration by parts, after using the reality ofh to
substituteh2 for h*h. BecauseD is diagonal, thej th com-
ponent of]S/]k52(k "D)t is k jD j t ~not summed overj ).
Therefore,

^j j&5E d3kH 2h*
]2h

]k]k
1uhu2~k "D!~D"k!t2J

5$11~ t/t i j !
2%^j j&0 , ~14!

where the 0-subscript on̂j j&05^j ij j&0 represents the ex
pectation value evaluated att50, and

t i j
2 5S 1

D iD j D ^j ij j&0

^k ik j&0
. ~15!

Equation~14! is the generalization of Eq.~1!. The diagonal
elements of Eq.~15! represent the generalization of Eq.~2!
becauseD i is an eigenvalue of]2v/]ki]kj , while ^j2& and
^k2& represent variances in position and wave number,
spectively. For a one-dimensional Gaussian distribution,Dj
[^j2&1/25a, andDk[^k2&1/25(2a)21.

IV. FRAUNHOFFER DIFFRACTION

To model the diffraction of a beam of light, we take E
~8! as the dispersion matrix withx representing the direction
of propagation, andD5v/k representing the eigenvalue
along the other two~perpendicular! directions. Assume also
that the ~parallel! x-direction separates as:h(k)
5h i(kx)h'(ky ,kz). It is sufficient to begin with only one
of the perpendicular directions. If we letj represent eithery
or z, we can define a phase,F, in Eqs.~10! and ~12!:
406Notes and Discussions
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C~j,t !5~2p!21/2E dk h~k!eiF (k), ~16!

F~k!52
1

2
Dt k21kj52

1

2
DtS k2

j

Dt D
2

1
j2

2Dt
.

~17!

At large times,F(k) varies so rapidly that exp(iF) acts as a
Dirac delta function,d(k2k0). In Eq. ~17! this occurs at
k05j/Dt. The integrals over allK of * cos(bK2)dK and
* cos(bK2)dK both equal (p/2b)1/2. To the extent that ex-
tremely rapid oscillations causes a function to be effectiv
zero, we have

lim
b→`

eibK2
5S p

2bD 1/2

d~K !. ~18!

Because the real part of the left-hand side is positive for
sign of b, we should choose the branch for which the re
part on the right-hand side is positive. This choice yields
expression that can also be obtained using the metho
steepest descent:9

lim
t→`

eiF (k)5expS i j2

2Dt D A2ip

Dt
dS k2

j

Dt D . ~19!

Consider diffraction by a slit of width,W, with C0 repre-
senting the uniform intensity at the slit. Hence,C(j,t50)
5C0 , and Eq.~12! suggests thath~k!5F~k,0!. Therefore
Eq. ~11! becomes an expression forh, which yields upon
integration~at the slit!:

h~k!5F~k, t50!

5
1

A2p
E

2W/2

W/2

dj8 C~j8,0!exp@2 ikj8#

5
C0W

A2p

sin~kW/2!

kW/2
. ~20!

To recover the single-slit diffraction pattern, we combi
Eqs. ~16!, ~19!, and ~20!. We then make the substitution
D5v/k, and x5vt. We also make the approximation th
A new appraisal of old formulations of me
Antonino Dragoa)

Department of Physical Sciences, University ‘‘Federico I

~Received 17 December 2002; accepted 23 Septe

Lazare Carnot’s formulation of mechanics~1783! is re-e
classical mechanics and modern theories. ©2004 Ame
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u'j/x!1 is the angle with respect to the optical axis:

C~j,t !5A i

2pDt
C0W

sin~jW/2Dt !

jW/2Dt
expS i j2

2Dt D
'A ik

2px
C0W

sin~kWu/2!

kWu/2
exp~ ikD, !, ~21!

whereD, is a pathlength correction to the distance along
optical axis:x1D,'(x21j2)1/2. The small-angle approxi-
mation, u!1, is not required in traditional treatments o
Fraunhoffer diffraction, where sin~u! would replaceu in Eq.
~21!.5 The need for this approximation can be seen from
truncated Taylor expansion at Eq.~4!. Light that has been
diffracted by a large amount represents wave number
from the center atk0 , which is aligned along thex direction.
For light, the higher order terms in Eq.~4! do not vanish.

Diffraction by a rectangular aperture is obtained using
same methods outlined above. The result is the produc
two terms such as given by Eq.~21!. The same factor of
x21/2 appears in both terms. In this small-angle approxim
tion, x can be replaced by the distance to the slit,r . Thus the
intensity of light far from a rectangular slit obeys the e
pected 1/r radiation law.

a!Electronic mail: gvandegr@purduenc.edu
1Richard L. Liboff, Introductory Quantum Mechanics~Addison-Wesley,
Reading, MA, 1992!, pp. 56–57, 157–161, 208–209.

2Albert Messiah,Quantum Mechanics~North-Holland, Amsterdam, The
Netherlands, 1965!, Vol. I, pp. 218–222.

3E. MacKinnon, ‘‘De Broglie’s thesis: A critical retrospective,’’ Am. J
Phys.44, 1047–1055~1976!.

4F. Crawford, ‘‘Derivation of the de Broglie relation from the Dopple
effect,’’ Am. J. Phys.50, 269–270~1982!.

5Max Born and Emil Wolf,Principles of Optics, 3rd ed.~Pergamon, New
York, 1965!, pp. 392–395, 738–746.

6Charles Kittel,Introduction to Solid State Physics, 5th ed.~Wiley, New
York, 1976!, pp. 212–219.

7Steven Weinberg, ‘‘Eikonal method in magnetohydrodynamics,’’ Ph
Rev.126, 1899–1909~1962!.

8Ronald Adler, Maurice Bazin, and Menahem Schiffer,Introduction to
General Relativity~McGraw-Hill, New York, 1965!, pp. 220–224.

9George B. Arfken and Hans J. Weber,Mathematical Methods for Physi-
cists, 4th ed.~Academic, San Diego, CA, 1995!, pp. 439–453.
chanics

I,’’ Napoli 80125, Italy

mber 2003!

valuated in relation to other formulations of
rican Association of Physics Teachers.

d
are

o-
adi

not
In a recent paper on the teaching of quantum mechan
D. F. Styeret al. discussed nine formulations of quantu
mechanics in order to gain some perspective for teach
quantum mechanics.1 In Appendix A the authors list the dif
ferent formulations of classical mechanics known to the
However, this list omits a formulation of a very differen
s,

g

.

nature given by Lazare Carnot.2 Historians have recognize
this formulation as the only one based on principles that
entirely supported by experiments.3 Furthermore, it is the
only formulation able to suggest the basic ideas of therm
dynamics, whose main author was the son of Lazare, S
Carnot.4 Remarkably, the theories of Lazare and Sadi Car
407p © 2004 American Association of Physics Teachers
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both share the following characteristic features:~a! they dis-
regard absolute space and trajectories;~b! they make use of
discrete time~time evaluated before and after a process!; ~c!
they consider extended bodies rather than point-masses~d!
their theories are based on the physical notion of work, wh
neglecting the notion of force;~e! in agreement with
D’Alembert, they disregard action at a distance;~f! their
theories are designed to solve the problem of evaluating
optimum efficiency in machines performing energy conv
sions; and ~g! their theories make use of elementa
mathematics—nothing beyond exponential functions
instead of differential equations.

L. Carnot’s mechanics is essentially a theory of interact
bodies by means of collisions. A collision is regarded as
basic phenomenon. In particular, continuously accelera
motion is obtained as a limiting case of a system driven b
series of pulses. The notion of Newtonian force is dismis
and masterly criticized. Newton’s second law is replaced
L. Carnot’s second fundamental equation for a system on
bodies

( miUi "ui50, ~1!

wheremi is the mass of theith body,Ui is the velocity lost
by that body during the collision, andui is a velocity called
by him ‘‘geometrical motion,’’ that is, a motion whose re
verse motion is not obstructed by the geometrical configu
tion of the system, owing to the impenetrability of the bo
ies. By disregarding L. Carnot’s obscure arguments
supporting Eq.~1!, it is easy to recognize it as an extensi
of the principle of virtual velocities to the collision of sever
bodies.

Even more interesting is the development of his the
from Eq. ~1!. Let us consider the caseui5constant, that is,
the same translation for all bodies; because it is a collec
motion, it can be reversed and hence constitutes a geom
cal motion. From Eq.~1! we have

(
i

miu"Ui50 or u"(
i

miUi50. ~2!

Due to the arbitrariness ofu, it follows that

(
i

miUi50. ~3!

Because

Ui5W i2V i , ~4!

whereW i is the initial velocity of theith body andV i is the
final velocity, we finally obtain

(
i

miW i5(
i

miV i , ~5!

which represents the conservation of the total momentum
the system.

Next, consider another geometrical motion,ui5vÃr i ,
that is, a rotation of the system with angular velocityv
around a fixed axis. In this case we have
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(
i

miUi "viÃr i50, ~6!

or, using the properties of the triple product:

(
i

miv"r iÃUi50. ~7!

Due to the arbitrariness ofv, we obtain

(
i

mir iÃUi50. ~8!

and from Eq.~4! we have

(
i

mir iÃW i5(
i

mir iÃV i , ~9!

which is the conservation of the total angular momentum
is interesting to observe that L. Carnot was proud to prop
a ‘‘new theory,’’ nowadays recognized as a theory
symmetries.5 ~Note that such a theory was proposed 50 ye
before the celebrated work of Galois, which was not app
ciated until twenty years later.! Incidentally, because the so
lution of the collision problem is expressed in terms of v
locities, we have to solve the conservation laws
algebraic–trigonometric equations; these equations are
example of point~g! in the above.

We now compare Carnot’s formulation of mechanics w
special relativity. Both theories can make use of the hyp
bolic geometry. Indeed, the main equation in L. Carno
formulation, that is, Eq.~1!, deals with the product of two
vectors (Ui ,ui) applied at the same point. As a consequen
this formula does not depend on the Euclidean axiom
parallel lines and the underlying geometry can be either
clidean or hyperbolic geometry.6 On the other hand, specia
relativity can be formulated, as first done by Sommerfeld
1909, in velocity space,7 whose geometry turns out to b
hyperbolic.8 Hence, there is no substantial difference in t
underlying geometry of special relativity and classical m
chanics when the latter is considered in L. Carnot’s form
lation in velocity space; both may be linked together by t
same geometry.

Some recent suggestions have introduced special relat
in a straightforward way, by essentially generalizing the cl
sical conservation laws.9 One can view these suggestions
extensions of Carnot’s formulation. Finally, in Carnot’s fo
mulation, as well as in special relativity, the concept of a
tion at a distance is absent. We recall that in 1905 the c
ceptual difference between classical mechanics—
Newton’s formulation—and special relativity was a drama
one; this difference is drastically reduced when L. Carno
rather than Newton’s formulation of classical mechanics
taken into account.

In addition, in Carnot’s formulation of mechanics, a sup
position principle for geometrical motion holds in analog
with the superposition principle for waves, including Schr¨-
dinger’s wave mechanics.

The various formulations of classical mechanics can
grouped according to two basic criteria. One criterion co
cerns the kinds of mathematics that they use: while L. C
not’s formulation makes use of algebraic mathematics,
other ones make use of calculus. The other criterion conc
the different ways of organizing a scientific theory. Accor
408Notes and Discussions
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ing to L. Carnot, a theory can be internally organized acco
ing to two models: the purely deductive model~‘‘where one
has to take out all from one’s own bag’’ of a few axioms! and
the ‘‘merely empirical’’ model.10 These two models can b
compared with those suggested by Einstein, namely
model of ‘‘constructive theories’’~like statistical mechanics!,
and the model of the ‘‘theories of principle’’~like
thermodynamics!.11 These two criteria distinguish the differ
ences between the various formulations of classical mec
ics. Whereas Newton’s mechanics is a deductive theory
makes use of the calculus of infinitesimals, both L. Car
and S. Carnot’s theories are empirical theories and make
of purely algebraic mathematics.

The analysis of the basic differences in the formulations
classical mechanics can be useful in characterizing the w
spectrum of the possible formulations of quantum mecha
~for example, matrix and wave mechanics!,12 in order to sug-
gest a more suitable attitude for teaching this theory.

a!Electronic mail: drago@unina.it
1D. F. Styeret al., ‘‘Nine formulations of quantum mechanics,’’ Am. J
Phys.70 ~3!, 288–297~2002!.

2L. Carnot,Essai sur les Machines en Ge´néral ~Defay, Dijon, 1783! and
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1803!. For a sketch of his life and his wide scientific work, see the cor
sponding issue inDictionary of Scientific Biography, edited by C. C.
Gillispie ~Scribner’s, New York, 1971!. A more comprehensive presenta
tion of his scientific work is in C. C. Gillispie,Lazare Carnot Savant
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mechanics,’’ Am. J. Phys.70 ~7!, 664 ~2002!.
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317. See also A. Drago and S. D. Manno, ‘‘I principi della meccan
secondo Lazare Carnot,’’ Epistemologia12, 305–330 ~1989! and A.
Drago, ‘‘Le lien entre mathe´matique et physique dans la me´canique de
Lazare Carnot,’’Lazare Carnot ou le Savant-Citoyen, edited by J.-P. Char-
nay ~Presse de l’Universite´ de la Sorbonne, Sorbonne, 1990!, pp. 501–
515.

4C. C. Gillispie, in Ref. 2, Chap. iii D.
5L. Carnot,Principes, in Ref. 2, p. x; A. Drago: ‘‘The birth of symmetries
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ture, edited by G. Darvas and D. Nagy~Hung. Acad. Sci., Budapest
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6I. Adler, A New Look at Geometry~Day, New York, 1966!, pp. 253–257.
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der Relativtheorie,’’ Phys. Z.10, 826–829~1909!.

8B. A. Rosenfeld,A History of Non-Euclidean Geometry~Springer, Berlin,
1988!, pp. 270–272.

9See W. C. Davidon, ‘‘Consequences of the inertial equivalence of ener
Found. Phys.5, 525–541~1975! and J.-M. Lévy-Leblond, ‘‘What is so
‘special’ about ‘Relativity,’’’ in Group Theoretical Methods, edited by A.
Jenner~Springer, Berlin, 1976!, pp. 617–627.

10L. Carnot,Essai, in Ref. 2, pp. 102–105; andPrincipes, in Ref. 2, pp.
xiii–xvii.

11M. J. Klein, ‘‘Thermodynamics in Einstein’s thought,’’ Science57, 505–
516 ~1967!; A. I. Miller, Albert Einstein’s Special Theory of Relativit
~Addison–Wesley, Reading, MA, 1981!, pp. 123–142.

12With A. Pirolo, I have suggested a variant of T. F. Jordan,Quantum Me-
chanics in Simple Matrix Form~Wiley, New York, 1986! and have devel-
oped an approach to quantum mechanics based on symmetries. S
Drago and A. Pirolo, ‘‘Quantum mechanics reformulated by means
symmetries,’’ inThe Foundations of Quantum Mechanics, edited by C.
Garola and A. Rossi~Kluwer Academic, Dordrecht, 1995!, pp. 229–237.
coordinates and how to avoid
ipoles,’’ by S. M. Blinder
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In a recent paper,1 S. M. Blinder addressed the appare
disappearance of thed function that is generated by¹2ur u21

when the spherical coordinates expression of the Lapla
¹2 is used. Blinder showed that the ‘‘lost’’ delta function
the origin can be recovered by a judicious introduction of
ad hoc step function sgn(r) to the ur u21 potential. The pur-
pose of this comment is to show that the insertion of this s
function can be put on a more rigorous footing.

When spherical coordinates are used, it is conventiona
let the radial distancer range from 0 to`, and the polar
angleu range from 0 top. However, the occurrence of th
origin at the beginning of the range ofr is a source of am-
biguity @see, for example, Eqs.~7! and ~38! in Ref. 1# and
contributes to the seeming disappearance of the delta f
tion of ¹2ur u21. To avoid these problems at the origin, w
can instead letr range from2` to 1`, andu from 0 top/2.
This choice does not affect the various spherical coordin
expressions of the Laplacian,
t

n

n

p

to

c-

te

¹25
1

r 2

]

]r
r 2

]

]r
1¯, ~1a!

¹25
1

r

]2

]r 2
r 1¯, ~1b!

where¯ signifies terms with derivatives with respect tof
andu. However, becauser can be negative, the potential of
point charge at the origin must be written asur u21

5(r 2)21/25sgn(r)/r. This is the mathematical justificatio
for the insertion of the sgn(r) term.

The d function in ¹2ur u21 is recovered as in Ref. 1. Fo
example, the Eq.~1a! form of ¹2 gives
409p © 2004 American Association of Physics Teachers
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¹2
1

ur u
5

1

r 2

d

dr
r 2F d

dr

1

~r 2!1/2G52
1

r 2

d

dr

r 3

~r 2!3/2

52
1

r 2

d

dr
sgn~r !52

2d~r !

r 2

524pd~r !. ~2!

The last equality in Eq.~2! results from

E E E
all space

drd3~r !5E
2`

`

r 2drE
0

2p

dfE
0

p/2

sinudud3~r !

52pE
2`

`

r 2 drd3~r !

52pE
2`

`

r 2dr
d~r !

2pr 2
. ~3!

Note that the ambiguous integral*0
`d(r )dr that occurs in

Ref. 1 is absent here because ther integration runs from2`
to `. Using Eq.~1b! for ¹2 gives
Comment on ‘‘Algebraic approach to the r
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T. M. Semkowa)

Wadsworth Center, New York State Department of Heal
and University at Albany, SUNY, Albany, New York 1220

~Received 15 July 2003; accepted 1 October 2003!

@DOI: 10.1119/1.1629092#

ll
is

d
is
g

ew
a
t

s

410 Am. J. Phys.72 ~3!, March 2004 http://aapt.org/aj
¹2
1

ur u
5

1

r

d2

dr2

r

ur u

5
1

r

d2

dr2
sgn~r !

5
2

r

d

dr
d~r !

52
2d~r !

r 2

524pd3~r !, ~4!

where we have used the identityr @dd(r )/dr#52d(r ).2

a!Electronic mail: benhu@physics.uakron.edu
1S. M. Blinder, ‘‘Delta functions in spherical coordinates and how to avo
losing them: Fields of point charges and dipoles,’’ Am. J. Phys.71, 816–
818 ~2003!.

2This identity can be shown by insertingr @dd(r )/dr# into an integral over
r of a well-behaved test functionf (r ) and integrating by parts:
*2`

` f (r )r @dd(r )/dr#dr 5 2*2`
` @ f (r )1r (d f /dr)#d(r )dr 5 2*2`

` f (r )
d(r )dr.
adioactive decay equations,’’ by
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The radioactive decay chain equations were origina
solved by Bateman1 using a Laplace transform method. Th
approach was recently reconsidered by Pressyanov.2 The ma-
trix ~or algebraic! solution, recently described by Moral an
Pacheco,3 was first introduced in Ref. 4. The purposes of th
comment are to outline the matrix solution with branchin
to give physical applications of the solution, and to give n
insight when all the decay constants in the chain are equ

Consider a branching decay chain described by the se
differential equations

dN1

dt
52l1N1 , ~1a!

dNj

dt
5(

i 51

j 21

l ibj i Ni2l jNj ~ j 52,...,n!, ~1b!

whereNj[Nj (t) is the average number of radioactive atom
at time t, l j is the decay constant,j is the position index in
the decay chain consisting ofn components, andbji is a
branching fraction from componenti to j (( j 5 i 11

n bji 51).
y

,

l.
of

We define a vector of radioactive atoms,NT

5(N1 ,...,Nn), and matrixA with elements,Aji 5l ibj i for
j . i , Aj j 52l j , Aji 50 for j , i , and express Eq.~1! in
matrix form

dN
dt

5AN. ~2!

When all thel j are different, the matrixA is diagonalizable
(P21AP5diag(2lj)), and the solution of Eq.~2! is4

N~ t !5P diag~e2l j t!P21N~0! . ~3!

The methods for calculating the matrixP and its inverseP21

were given in Ref. 5.
The matrix solution, Eq.~3!, has been used to study th

nuclear fissionb-decay chains, where branching frequen
occurs due to nuclear isomerism.4,5 Another application is to
the decay and growth of radon daughters.6 Equation~3! can
incorporate a decrease of activity due to exponential de
during counting, as well as chemical separations, in a gen
and compact way.6 Equations of the type of Eq.~1! are ex-
410p © 2004 American Association of Physics Teachers
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amples of compartment~or box! models, which have numer
ous applications. One such general treatment of the ma
solution in health physics is in Ref. 7.

There is a limiting condition of the matrix solution, whe
some or alll j are equal. Then,A is singular and no longe
diagonalizable. Although this case is less likely in nucle
physics because the decay constants are generally diffe
it may nevertheless be of importance in general compartm
modeling. In addition, it provides interesting physical i
sight.

Consider a case for which all thel j are equal, there is
only sequential decay in the chain, that is, no branching,
the boundary condition isN1(0)Þ0, Nj (0)50 for j .1. One
way of solving this case would be to consider the gene
solution and take the limit. For example, forn52, Eq. ~3!
gives N2(t)5N1(0)l1@(e2l1t2e2l2t)/(l22l1)#. By re-
solving the exponential series and taking the limitl1 , l2

→l, we obtainN2(t)5N1(0)lte2lt. This procedure is too
cumbersome in the general case. It is more convenien
rewrite Eq.~1! as

dN1

dt
52lN1 , ~4a!

dNj

dt
5l~Nj 212Nj !. ~ j 52,...,n!. ~4b!

If we apply the Laplace transform1,2 to Eq. ~4!, we obtain

Ñn~s!5
ln21

~s1l!n N1~0!. ~5!

The functionest/(s1l)n has a pole of thenth order, and the
residue theorem yields

Nn~ t !5N1~0!
~lt !n21

~n21!!
e2lt. ~6!

Before interpreting Eq.~6!, let us shift the indexj in Eq. ~4!,
so that it starts from 0, and let us definePj[Pj (t)
5Nj (t)/N0(0) as the probability of finding a radioactiv
atom at positionj in the chain. Then, from Eq.~4!,

dP0

dt
52lP0 , ~7a!

dPj

dt
5l~Pj 212Pj ! ~ j >1!. ~7b!

Equation~7! was first solved by Bateman in another of h
seminal papers on statistical fluctuations in radioact
411 Am. J. Phys., Vol. 72, No. 3, March 2004
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decay.8 By means of the generating functionG(z,t)
5( j >0Pj (t)z

j , Eq. ~7! can be coverted to9

]G

]t
52l~12z!G, ~8!

whose solution isG(z,t)5e2(12z)lt. It is known from the
theory of statistical distributions10 that the exponential gen
erating function is a Poisson distribution given by Eq.~6!
~with an index shift!.

It is remarkable, that theaveragenumber of atoms of the
chain members for sequential decay, when all the decay c
stants are equal, is governed by the Poisson distribut
similar to thefluctuationsin radioactive decay. The physica
origin of this result lies in the renewal process. An atom th
has decayed in the chain with equal decay constants is
newed, that is, it continues to decay with the same de
constant, and only its position index in the chain has inc
mented. It is known that such an ordinary renewal proc
leads to the Poisson distribution.11 The mean of this Poisson
distribution, Eq. ~6!, is equal tolt, which can take any
value. There is an important difference from the Poiss
fluctuationsin radioactive decay, however.12 To satisfy the
Poisson fluctuations, exemplified by the decay of a lon
lived radionuclide, we must have the total number of rad
active atomsN@1 and the probability of a single decay
2e2lt'lt!1. The mean in this case is equal toNlt,
which can take any value.13 The small number of atoms tha
decay in a short time intervalt is much less than the tota
number of atoms and, therefore, the decay does not dis
the distribution.

a!Electronic mail: tms15@health.state.ny.us
1H. Bateman, ‘‘The solution of a system of differential equations occurr
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equations,’’ Am. J. Phys.71 ~7!, 684–686~2003!.

4G. P. Ford, K. Wolfsberg, and B. R. Erdal, ‘‘Independent yields of t
isomers of133Xe and135Xe for neutron-induced fission of233U, 235U, 238U,
239Pu, and242Amm, ’’ Phys. Rev. C30, 195–213~1984!.

5T. M. Semkow, A. C. Wahl, and L. Robinson, ‘‘Yields of In and Sn pro
ucts from thermal- and 14-MeV-neutron-induced fission of235U,’’ Phys.
Rev. C30, 1966–1975~1984!.

6T. M. Semkow, P. P. Parekh, C. D. Schwenker, R. Dansereau, and
Webber, ‘‘Efficiency of the Lucas scintillation cell,’’ Nucl. Instrum. Meth
ods Phys. Res. A353, 515–518~1994!.
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animals,’’ Health Phys.61 ~2!, 245–253~1991!.

8H. Bateman, ‘‘On the probability distribution ofa particles,’’ Philos. Mag.
Ser. 620 ~118!, 704–707~1910!

9N. T. J. Bailey,The Elements of Stochastic Processes with Application
the Natural Sciences~Wiley, New York, 1964!, p. 69.

10N. L. Johnson, S. Kotz, and A. W. Kemp,Univariate Discrete Distribu-
tions ~Wiley, New York, 1993!, p. 151.
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cally as a second derivation of the Poisson distribution.
13Note thatN was omitted in Ref. 8.
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In a recent article in this journal an interesting applicati
and demonstration of frustrated total internal reflect
~FTIR! was presented.1 Two items should be noted to plac
this article in a proper context:~i! The physics of FTIR as
well as the propagation of the light beam in the piece of gl
sketched in Fig. 1 of Ref. 1 is a very simplified picture: t
authors did not discuss the Goos–Ha¨nchen shift in FTIR,
which is a very important deviation from geometrical opti
~predicted by Newton and discussed by him in his book
optics cited as Ref. 3 in Ref. 1!. This shift describes a lon
gitudinal shift for polarized beams in the plane of inciden
and can be as large as 4 to 5 wavelengths.2 For unpolarized
or circular polarized beams, a second shift perpendicula
the plane of incidence can be observed, which is, howe
The validity of the Helmholtz theorem
F. Rohrlicha)

Department of Physics, Syracuse University, Syracuse,

~Received 11 August 2003; accepted 7 November
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an order of magnitude smaller than the longitudinal shi4

~ii ! Many references to applications and demonstration
FTIR can be found in a review article that appeared in t
journal some time ago.5

a!Electronic mail: alfons@uni-koblenz.de
1F. P. Zanella, D. V. Magalhaes, M. M. Oliveira, R. F. Bianchi, L. Misogu
and C. R. Mendoca, ‘‘Frustrated total internal reflection: A simple app
cation and demonstration,’’ Am. J. Phys.71~5!, 494–496~2003!.

2A. Haibel, G. Nimtz, and A. A. Stahlhofen, ‘‘Frustrated total reflectio
The double prism revisited,’’ Phys. Rev. E63~1!, 047601~2001!.

3A. A. Stahlhofen, ‘‘The photonic tunneling time in frustrated total intern
reflection,’’ Phys. Rev. A62~2!, 012112~2000!.

4References for the transverse Goos–Ha¨nchen shift can be found in Refs.
and 3.

5S. Zhu, A. W. Yu, D. Hawley, and D. Roy, ‘‘Frustrated total internal r
flection: A demonstration and review,’’ Am. J. Phys.54„7…, 601–607
~1986!.
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The Helmholtz theorem states that a vector field,V(x,t),
in three-dimensional space can be separated uniquely
two components, a transverse~solenoidal! component,Vt ,
and a longitudinal~irrotational! one, V l , such thatV5Vt

1V l , where1

¹•Vt50, ¹3Vl50. ~1!

The time dependence ofV is irrelevant. This irrelevance ca
also be seen from the explicit expressions forVt and V l in
terms of V as given in Jackson’s1 equations~6.27! and
~6.28!.

This theorem has recently been challenged by He2

~cited in the following asH!. He claims that there is a ‘‘com
mon misconception that the standard Helmholtz theor
...can be applied to retarded vector fields.’’ He then proce
to claim that therefore my paper3 ~cited asR! is incorrect.
The purpose of this note is to show that Heras’s claim
false, and that the Helmholtz theorem also applies to retar
~and advanced! vector fields.
to

s

m
s

s
ed

At first, it might seem that retardation may indeed mak
difference because it introduces an additional spatial dep
dence into the integral that expresses the field in terms o
sources. However, the Helmholtz theorem has nothing to
with the source of the vector field that is being separat
Therefore, it holds also for retarded~and advanced! fields.

Because this issue has bearing on causality~the propaga-
tion of fields with the speed of light!, and is encountered
often in electrodynamics, further discussion is desirable. A
preliminary remark, note that in the Coulomb gauge thesca-
lar potential f satisfies the Poisson equation as a con
quence of Maxwell’s field equations and is thereforenot
causal. Nevertheless, thetotal fields are causal, independent
of the gauge. That fact has been known for a long time.4 Its
proof doesnot involve the Helmholtz theorem.

The objection to the validity of the Helmholtz theore
refers to retardation, that is, to the relation of the field to
sources. A vector field that is a source, therefore, should
encounter that objection. In electrodynamics, one can th
fore define the separation of the field,E, in terms of the
separation of its sources. For the equation
412p © 2004 American Association of Physics Teachers
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hE54p~] j /]t1¹r!, ~2!

a separation of sources into transverse and longitudinal o
results in theretardedelectric fields

Et~x!524pE DR~x2x8!
] j t~x8!

]t8
d4x8 ~ transverse!,

~3a!

El~x!524pE DR~x2x8!F] j l~x8!

]t8
1¹r~x8!Gd4x8

~ longitudinal!. ~3b!

It is easy to verify that the conditions~1!, applied to these
electric fields, hold for Eq.~3!. This involves integration by
parts with the assumption of asymptotic boundedness of
sources!.

On the other hand, Heras2 claims the decomposition
(H8), (H9), and (H10) of his paper. If those equations a
added, we find that~a! theB dependent terms cancel,~b! the
Erratum: ‘‘Propagating and evanescent wa
Phys. 71 „6…, 562–567 „2003…‡
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last term in Eq.~H10! separates into two terms according
j5 j t1 j l , and ~c! the sum of the three equations is exac
the sum ofEt and El given in Eq. ~3! as well as inR. It
follows that the separation advocated by Heras is entir
arbitrary.

The conclusion is therefore that the Helmholtz theor
applies to three-vector fields ofany time dependence, includ
ing retarded or advanced time dependence on its source
long as the sources of these fields are bounded in space

a!Electronic mail: rohrlich@syr.edu
1For the present purpose, the best reference is J. D. Jackson,Classical
Electrodynamics~Wiley, New York, 1999!, 3rd ed., pp. 241–242.

2J. A. Heras, ‘‘Comment on ‘Causality, the Coulomb field, and Newto
law of gravitation,’ ’’ by F. Rohrlich, Am. J. Phys.71 ~7!, 729~2003!, cited
asH.

3F. Rohrlich, ‘‘Causality, the Coulomb field, and Newton’s law of gravit
tion,’’ Am. J. Phys.70 ~4!, 411 ~2002!, cited asR.

4C. W. Gardiner and P. D. Drummond, ‘‘Causality in the Coulomb gauge
direct proof,’’ Phys. Rev. A38, 4897–4898~1988!.
ves in absorbing media’’ †Am. J.
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In Fig. 1, the inequality should read«2,«1 , and the cap-
tion should state: ‘‘A wave incident on a dielectric mediu
with a smaller dielectric constant at an angle greater than
critical angle,u.uc , results in an exponentially decayin
wave in medium 2.’’ Similarly, the sentence in the third pa
graph of the left-hand column of p. 562 should read: ‘‘T
physics of evanescent waves is readily understood by c
sidering what happens when light is shone on a nonabsor
medium at an angle greater than the angle of total inte
reflection from a medium with higher refractive index.’’

In the paragraph below Eq.~5!, we should have stated tha
an examination of the Poynting vector shows that no ene
flows inside medium 2 normal to the interface.
e

-

n-
ng
al

y

In the paragraph below Eq.~8!, the first sentence shoul
read: ‘‘In other words, the normal component of the Poynti
vector is only nonzero if« iÞ0.’’

Also, Eq. ~24! should read:

T5
2kz

(a)/«a

@kz
(m)/«m1kz

(a)/«a#
. ~24!

Although these errors are regrettable, they do not aff
any of the main results of our paper.

a!Present address: Department of Physics, Indian Institute of Techno
Kanpur 208 016, India.
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